Threat Research

Monitoring ICS Cyber Operation Tools and Software Exploit Modules To Anticipate Future Threats

Jeffrey Ashcraft, Daniel Kapellmann Zafra, Nathan Brubaker
Mar 23, 2020
7 min read
|   Last updated: Apr 12, 2024
TTPs
Threat Research

There has only been a small number of broadly documented cyber attacks targeting operational technologies (OT) / industrial control systems (ICS) over the last decade. While fewer attacks is clearly a good thing, the lack of an adequate sample size to determine risk thresholds can make it difficult for defenders to understand the threat environment, prioritize security efforts, and justify resource allocation.

To address this problem, FireEye Mandiant Threat Intelligence produces a range of reports for subscription customers that focus on different indicators to predict future threats. Insights from activity on dark web forums, anecdotes from the field, ICS vulnerability research, and proof of concept research makes it possible to illustrate the threat landscape even with limited incident data. This blog post focuses on one of those source sets—ICS-oriented intrusion and attack tools, which will be referred to together in this post as cyber operation tools.

ICS-oriented cyber operation tools refer to hardware and software that has the capability to either exploit weaknesses in ICS, or interact with the equipment in such a way that could be utilized by threat actors to support intrusions or attacks. For this blog post, we separated exploit modules that are developed to run on top of frameworks such as Metasploit, Core Impact, or Immunity Canvas from other cyber operation tools due to their exceedingly high number.

Cyber Operation Tools Reduce the Level of Specialized Knowledge Attackers Need to Target ICS

As ICS are a distinct sub-domain to information and computer technology, successful intrusions and attacks against these systems often requires specialized knowledge, establishing a higher threshold for successful attacks. Since intrusion and attack tools are often developed by someone who already has the expertise, these tools can help threat actors bypass the need for gaining some of this expertise themselves, or it can help them gain the requisite knowledge more quickly. Alternatively, experienced actors may resort to using known tools and exploits to conceal their identity or maximize their budget.

ICS attacker knowledge curve
Figure 1: ICS attacker knowledge curve

The development and subsequent adoption of standardized cyber operation tools is a general indication of increasing adversarial capability. Whether these tools were developed by researchers as proof-of-concept or utilized during past incidents, access to them lowers the barrier for a variety of actors to learn and develop future skills or custom attack frameworks. Following this premise, equipment that is vulnerable to exploits using known cyber operation tools becomes low-hanging fruit for all sorts of attackers.

ICS Cyber Operation Tool Classification

Mandiant Intelligence tracks a large number of publicly available ICS-specific cyber operation tools. The term "ICS-specific," as we employ it, does not have a hard-edged definition. While the vast majority of cyber operation tools we track are clear-cut cases, we have, in some instances, considered the intent of the tool's creator(s) and the tool's reasonably foreseeable impact on ICS software and equipment. Note, we excluded tools that are IT-based but may affect OT systems, such as commodity malware or known network utilities.  We included only a few exceptions, where we identified specialized adaptations or features that enabled the tool to interact with ICS, such as the case of nmap scripts.

We assigned each tool to at least one of eight different categories or classes, based on functionality.

Classes of ICS-specific intrusion and attack tools
Table 1: Classes of ICS-specific intrusion and attack tools

While some of the tools included in our list were created as early as 2004, most of the development has taken place during the last 10 years. The majority of the tools are also vendor agnostic, or developed to target products from some of the largest ICS original equipment manufacturers (OEM). Siemens stands out in this area, with 60 percent of the vendor-specific tools potentially targeting its products. Other tools we identified were developed to target products from Schneider Electric, GE, ABB, Digi International, Rockwell Automation, and Wind River Systems.

Figure 2 depicts the number of tools by class. Of note, network discovery tools make up more than a quarter of the tools. We also highlight that in some cases, the software exploitation tools we track host extended repositories of modules to target specific products or vulnerabilities.

ICS-specific intrusion and attack tools by class
Figure 2: ICS-specific intrusion and attack tools by class

Software Exploit Modules

Software exploit modules are the most numerous subcomponents of cyber operation tools given their overall simplicity and accessibility. Most frequently, exploit modules are developed to take advantage of a specific vulnerability and automate the exploitation process. The module is then added to an exploit framework. The framework works as a repository that may contain hundreds of modules for targeting a wide variety of vulnerabilities, networks, and devices. The most popular frameworks include Metasploit, Core Impact, and Immunity Canvas. Also, since 2017, we have identified the development of younger ICS-specific exploit frameworks such as AutosploitIndustrial Exploitation Framework (ICSSPLOIT), and the Industrial Security Exploitation Framework.

Given the simplicity and accessibility of exploit modules, they are attractive to actors with a variety of skill levels. Even less sophisticated actors may take advantage of an exploit module without completely understanding how a vulnerability works or knowing each of the commands required to exploit it. We note that, although most of the exploit modules we track were likely developed for research and penetration testing, they could also be utilized throughout the attack lifecycle.

Exploit Modules Statistics

Since 2010, Mandiant Intelligence has tracked exploit modules for the three major exploitation frameworks: Metasploit, Core Impact, and Immunity Canvas. We currently track hundreds of ICS-specific exploit modules related to more than 500 total vulnerabilities, 71 percent of them being potential zero-days. The break down is depicted in Figure 3. Immunity Canvas currently has the most exploits due in large part to the efforts of Russian security research firm GLEG.

ICS exploit modules by framework
Figure 3: ICS exploit modules by framework

Metasploit framework exploit modules deserve particular attention. Even though it has the fewest number of modules, Metasploit is freely available and broadly used for IT penetration testing, while Core Impact and Immunity Canvas are both commercial tools. This makes Metasploit the most accessible of the three frameworks. However, it means that module development and maintenance are provided by the community, which is likely contributing to the lower number of modules.

It is also worthwhile to examine the number of exploit modules by ICS product vendor. The results of this analysis are depicted in Figure 4, which displays vendors with the highest number of exploit modules (over 10).

Vendors with 10 exploit modules or more
Figure 4: Vendors with 10 exploit modules or more

Figure 4 does not necessarily indicate which vendors are the most targeted, but which products have received the most attention from exploit writers. Several factors could contribute to this, including the availability of software to experiment with, general ease of writing an exploit on particular vulnerabilities, or how the vulnerability matches against the expertise of the exploit writers.

Some of the vendors included in the graph have been acquired by other companies, however we tracked them separately as the vulnerability was identified prior to the acquisition. One example of this is Schneider Electric, which acquired 7-Technologies in 2011 and altered the names of their product portfolio. We also highlight that the graph solely counts exploit modules, regardless of the vulnerability exploited. Modules from separate frameworks could target the same vulnerability and would each be counted separately.

ICS Cyber Operation Tools and Software Exploitation Frameworks Bridge Knowledge and Expertise Gaps

ICS-specific cyber operation tools often released by researchers and security practitioners are useful assets to help organizations learn about ongoing threats and product vulnerabilities. However, as anything publicly available, they can also lower the bar for threat actors that hold an interest in targeting OT networks. Although successful attacks against OT environments will normally require a high level of skills and expertise from threat actors, the tools and exploit modules discussed in this post are making it easier to bridge the knowledge gap.

Awareness about the proliferation of ICS cyber operation tools should serve as an important risk indicator of the evolving threat landscape. These tools provide defenders with an opportunity to perform risk assessments in test environments and to leverage aggregated data to communicate and obtain support from company executives. Organizations that do not pay attention to available ICS cyber operation tools risk becoming low-hanging fruit for both sophisticated and unexperienced threat actors exploring new capabilities.

FireEye Intelligence customers have access to the full list and analysis of ICS cyber operation tools and exploit modules. Visit our website to learn more about the FireEye Mandiant Cyber Physical Threat Intelligence subscription.